
FachgruppeMedienwissenschaft

Computer Game Sciences

Master’s Thesis

Quest Construction in REDengine 3
–

A view into the conditions of

TheWitcher 3:Wild Hunt quest modding.

Gregor Hans Christian Sönnichsen

March 24, 2022

Supervisors:

Prof. Dr. Jochen Koubek

Robin HädickeM.A. Dipl.-Kult.

»The `trial of the radishes` is meant as a guided, self-learning tutorial *without* step-by-step

instructions. Instead it focuses on exploratory learning by actively using the tools to solve

increasingly challenging tasks.«1

»‘trials of the radishes - reportedly only three in ten survived the trials’😄«2

Note: in order to not assume any gender, I will use “them”/ “them” pronouns for all persons

mentioned in this work.

2 rmemr. (2022). [Message]. w3 radish tools. Discord. Online:
https://discord.com/channels/416336392692695040/417414398987206676/9855036086761
67740 (accessed: 16.03.2023).

1 rmemr. (2020). Trial of the radishes - Trial 1 - Installation at The Witcher 3 Nexus - Mods
and community. Online: https://www.nexusmods.com/witcher3/articles/113 (accessed:
16.03.2023).

1

Abstract

In the quest definitions contained in the game files of The Witcher 3: Wild Hunt

(TW3) a huge amount of knowledge is embedded: Not only varying technical

approaches to formalisation of the concept “quest”, but also views concerning how

parts of real and fictional worlds are understood and adopted as technical units for

design, forming an “engine language”. Analysing and understanding this language

as a condition for design is the topic of this thesis.

The theoretical frame is set with conceptions of design, tools and their so-called

object languages in design studies, which are integrated with theory about game

engines. REDengine 3’s3 language for quest construction is accessible only in a

specific context: in the TW3 modding scene, which is dealing not only with the

engine’s givens, but also with an ambiguous strategy by CD Projekt RED, visible in

incomplete tools and cautious support. Analysing the engine and its tools proves

them to be engrained with a focus on narratives and specialised sub-languages, and

shows that a great deal of designers’ conditions is determined by usability issues.

3 The engine built for TW3.

2

Zusammenfassung

In den Quest-Definitionen, die in den Spieldateien von The Witcher 3: Wild Hunt

(TW3) enthalten sind, liegt eine große Menge Wissen. Dazu gehören nicht nur

verschiedene technische Herangehensweisen an die Formalisierung des Konzepts

“Quest”, sondern auch Weltansichten bezüglich der Art, wie Teile realer und

fiktionaler Welten verstanden und als technische Einheiten für die Gestaltung

adaptiert wurden. Die Analyse und das Greifen dieser Sprache als Bedingung für

Design sind das Thema dieser Thesis.

Der theoretische Rahmen wird gesetzt mit aus der Designwissenschaft

stammenden Konzeptionen von Design-Arbeit, Werkzeugen und deren

sogenannten Objekt-Sprachen. Diese Konzepte werden auch mit Theorie über

Spiele-Engines integriert. Die Sprache der REDengine 34 für Quest-Konstruktion ist

nur in einem spezifischen Kontext erreichbar: In der Modding-Szene um TW3, die

neben den Engine-Gegebenheiten mit der uneindeutigen Strategie CD Projekt

REDs zurechtkommen muss – sichtbar in unvollständigen Entwicklerwerkzeugen

und zurückhaltender Unterstützung vonseiten des Studios. Eine Analyse der Engine

und zugehöriger Werkzeuge zeigt, dass in diese ein Fokus auf Narrative sowie

spezialisierte Sub-Sprachen eingeschrieben ist. Es zeigt sich zudem, dass ein

großer Teil der Design-Konditionen von Fragen der Benutzbarkeit bestimmt wird.

4 Die Engine, mit der TW3 gemacht wurde.

3

Table of Contents

Abstract 2
Zusammenfassung 3

Table of Contents 4

Chapter 1. Introduction 6
1.1 Methods and Motivations 6

1.1.1 Game Studies 7
1.1.2 Adjacent Disciplines 7
1.1.3 The Witcher 3 Quests 10

Chapter 2. Game Engines as Tools 12
2.1 To Design for Execution 12
2.2 Tools and their “Grain” 15

2.2.1 Engines as Tools 15
2.2.2 Grain and Design Constraints 17

2.3 Game Engines’ Languages 20
2.3.1 Language as a Design Studies Lens 20
2.3.2 Boudrillard’s Object Language 22
2.3.3 Tool Design Languages 26

Chapter 3. Modding Stories for The Witcher 3 28
3.1 Video Game Storytelling 28

3.1.1 Short History of Storytelling 28
3.1.2 Video Game Quests 31

3.2 Modders under CD Projekt RED Conditions 34
3.2.1 Work Optimisation at CD Projekt RED 34
3.2.2 Modding Scenes 38
3.2.3 Asymmetries in Modder-Studio Relations 40

3.3 From Command-Line to Graph Editor 46
3.3.1 Basics of The Witcher 3 Modding 46
3.3.2 Community-Made Tools 48

Chapter 4. REDengine 3’s Quest Design Language 55
4.1 Graph-like Progression 55

4.1.1 Graph Editing 55
4.1.2 Interactive Fiction with Questgraph 57
4.1.3 Narrative Glossary Categories 59
4.1.4 Objectives incentivising Heavy Guidance 60
4.1.5 Quest Rewards and the Path of Least Resistance 61

4.2 Layers on the Game World 63
4.2.1 Guiding with Mini-Map Pins 63
4.2.2 Beast Ambiguities in TW3 Communities 66

4

4.2.3 Encounters and The Time Issue of Modding 69
4.3 Scenes and the Power of Domain Languages 71

4.3.1 Abstraction Hierarchies with Specialised Ends 71
4.3.2 REDscript as Mediating Language 73
4.3.3 A Language for Scene Building 75
4.3.4 Modularity and Abstraction as Enabling Base Principles 76

Chapter 5. Conclusion 81
5.1 Evaluation 81

5.1.1 Integrating Design- with Game Studies 81
5.1.2 Connecting to the Cultural Context 82
5.1.3 Inspecting REDengine 3 84

5.2 Résumé 86

Bibliography 87
Literature, Websites and Posts 87
Video Games 93
Software 94
Images 94

Declaration 95

5

Chapter 1. Introduction

The design of quests, missions or stories has become an area of great interest in

current game development culture and game studies5.

I am interested in scholarly analysis of video game technology for narrative content,

sicne I am convinced that by performing such intersections of game studies and

-industry much knowledge can be gained. The goal of this thesis is to do an

investigation of this kind: I will examine how quest construction can be done by

modding REDengine 3, using production-historical information and results from

narrative game studies to analyse the conditions a designer will face. This master’s

thesis then poses the following central research question:

With what conditions can modders construct quests in REDengine 3 and

what are the conditions’ consequences?

The main motivation and estimated contribution of this thesis is to shed light on how

designers always work under the influence of technical and cultural conditions, and

what very specific consequences, helpful and hindering, this can have. This will

show not only whenever I am able to supplement and contextualise engine findings

with existing (game) design literature, but also in traces to other narrative forms and

in the discussion of modding scenes as a cultural frame. It is from the combination

of meanings assigned through technical realities and context that REDengine 3’s

“world-view" – regarding what quests are, what is associated with them, and how

they are easily constructed – as perceived by an observer will become apparent.

On a meta-scientific layer, this thesis forms a crossing point for game studies,

design studies and game development. This gives it value as an interdisciplinary

project, but also as a project in the respective disciplines.

1.1 Methods and Motivations

In the next paragraphs I will present motivations and methods for tackling this thesis’

research question, following the outline.

5 Engström, Henrik. (2019). GDC vs. DiGRA: Gaps in Game Production Research. p. 11.
“[..] narratives in games have received a massive interest from the research community. The
industry has also produced many titles the last decades that have received a lot of attention
for their narratives.”

6

1.1.1 Game Studies

First and foremost, I understand this work as situated in the field of game studies,

which is based mainly on the fact that this work, indeed, studies a specific game and

aspects of video game storytelling in general. This classification is implemented by

references to and inclusion of work in game studies and adjacent theory, such as

The Unity Game Engine and the Circuits of Cultural Software by Nicoll and Keogh or

Quests. Design, Theory, and History in Games and Narratives by Jeff Howard.

Based on Paul Martin’s analysis6, my area of research falls into the Humanities/
Social Sciences community – wherein design, culture and form are three major

topics (see Table 1). All three are touched upon in this thesis, with design being an

important theoretical pillar, modding culture a context, and the form of REDengine 3

and its tools the subject of analysis.

Table 1: Communities in games research, divided into subgroups based on citations7.

1.1.2 Adjacent Disciplines

Moving towards the connection to more specific disciplines, other topics and

adjacent fields can be easily identified: by integrating design studies (Chapter 2) as

7 ibid.

6 Martin, Paul. (2018). The Intellectual Structure of Game Research. In: Game Studies. vol.
18. no. 1

7

a theoretical foundation for this work, this work potentially opens up a broader

perspective on issues revolving around modern human production of cultural

artefacts. While it is not the scope of this thesis to approach this branch in the

surrounding field of anthropology, it is certainly its intention to point to this bigger

picture. Major references in this discipline will be the works of Claudia Mareis, Ken

Friedman, Herbert A. Simon and Christopher Alexander. To successfully perform the

transition from the relatively abstract design studies to REDengine 3, the book The

Unity Game Engine and the Circuits of Cultural Software8 by Benjamin Nicoll and

Brendon Keogh will aid, delivering valuable thoughts on how the engine as a

non-neutral tool influences design and thus people. In the general structure of this

thesis, discussions in design studies will help by allowing for instance narrative in

games to relate to some general concepts like what design and design languages

are. On the other hand, the concept of language in design studies will function as a

conceptual lens to understand the nature of quest building in REDengine 3, and thus

form an overall framework for elevating technological details into a scientific

discourse. At last, to the authors knowledge there have not been any major

couplings between game- and design studies as scientific disciplines, yet doing so

provides natural perspectives and bridges to think about games and their

production.

The production angle is where this thesis will touch topics of “cultural-historical

configurations”9, contextualising the creative work itself (Chapter 3). Since

REDengine 3 is a proprietary tool by CD Projekt RED that was never intended to be

particularly accessible from the outside, this thesis uses modding as a major point of

entry. The thesis is thereby positioned close to analyses like Tanja Sihvonen’s view10

into conditions of The Sims and its culture of modders utilising the potential of said

conditions (or their absence). However, naturally, designing with the proper internal

tools is radically different than with just a command line and the tools created by

modders. This situation effectuates a whole new set of conditions for anyone who

wants to work with the engine – and is thus studied here as well. I will go so far into

the culture of modding and CD Projekt RED as is necessary to understand the

frame in which a REDengine 3 user will enter when entering via modding. Another

part of the cultural context is the history and nature of narratives (in video games).

While this thesis does not feature an extensive analysis of how storytelling traditions

10 Sihvonen, Tanja. (2011). Players Unleashed! Modding The Sims and the Culture of
Gaming. Amsterdam University Press. cf. p. 23

9 Ruppert, Wolfgang. (1993). Zur Geschichte der industriellen Massenkultur. Überlegungen
zur Begründung eines Forschungsansatzes. In: Ruppert, Wolfgang. (1993). Chiffren des
Alltags. Erkundungen zur Geschichte der industriellen Massenkultur. Jonas. pp. 9-22. p. 10

8 Keogh, Brendan; Nicoll, Benjamin. (2019). The Unity Game Engine and the Circuits of
Cultural Software. Springer International Publishing.

8

map into the engine, it will draw some major traces from e.g. Jeff Howard’s work on

quest design11 to quests in REDengine 3.

Chapter 4 will be concerned with an in-depth analysis of selected conditions

resulting from the technical givens of REDengine 3 and its tools. As a category for

the chapter’s contents, one could use the label “video game form”, but it also and

more specifically fits into the realm of code and platform studies, as they were

declared by Ian Bogost and Nick Montfort12. In their explanation of where platform

studies are situated, Bogost and Montfort13 speak of different levels on which “new

media” can be analysed:

Illustration 1: Levels of analysis for “new media” according to Bogost and Montford (modified

for better readability)14.

Sorting Chapter 4’s contents in this hierarchy, the following results:

Reception/ Operation is concerned with the player’s experience and can thus be

ruled out. Interface refers to the boundary between player and game and will be of

concern only for illustrative purposes, since many features of the engine translate

well to the game’s user interface. We can observe the Form/ Function lens at work,

when speaking about the meaning or consequences of REDengine 3’s design

capabilities: Form/ Function is “the main concern of cybertext studies”, say Bogost

and Montfort, implying that aspects like ergodicity15 are discussed on this level,

15 Aarseth, Espen. (1997). Cybertext—Perspectives on Ergodic Literature. JHU Press. pp.
1-2. ”In ergodic literature, non-trivial effort is required to allow the reader to traverse the text.”

14 ibid.
13 ibid.

12 Bogost, Ian; Montfort, Nick. (2022). Levels. In: Platform Studies, a book series published
by MIT Press, Ian Bogost and Nick Montfort, series editors. Online:
http://www.platformstudies.com/levels.html (accessed: 16.03.2023).

11 Howard, Jeff. (2008). Quests: Design, Theory, and History in Games and Narratives. 2nd
ed. A K Peters/ CRC Press.

9

which I will do as well. Regarding the line between code and platform, the

categorisation becomes blurry when applied to this project: in another place, Bogost/

Montfort define per citation of Marc Andreessen: “If you can program it, then it’s a

platform. If you can’t, then it’s not.”16. On the first glance, this would put this project

into platform studies, because REDengine 3 is indeed programmable, as it has an

internal scripting language. However, I set out to not only inspect what the engine

delivers without any game created on top, but with a game. So I also analyse the

gameplay code and the files in which quest contents are defined, which puts the

project into both platform and code studies, concludingly. Studying these lower

levels not only caters to the nuisance that the “foundation of new media is still

relatively neglected”17, but also – in exposing technical realities – completes the

picture of conditions for quest construction in REDengine 3.

1.1.3 The Witcher 3 Quests

One question might remain: why TW3 and why quests? First of all, doing this work

will yield a precise insight into the way a modern, successful, hugely selling

narrative-driven game is built.

The specific game that falls into the category of narrative-driven RPGs and which I

am going to inspect is The Witcher 3: Wild Hunt (2015)18 with its extensions Hearts

of Stone (2015), Blood and Wine (2016) and every patch up till January 2023, all

developed and published by the Polish video game developer CD Projekt RED.

TW3 is a game which thematically is about the relations between father-figures and

their (adopted) children and about the consequences of war. Avatar Geralt is a

Witcher, a professional monster-slayer who struggles with the ethical balance

between his proclaimed neutrality and the injustices they find on their path and

searches for Ciri, their adoptive daughter. The game is set in the world of Andrzej

Sapkowski’s Witcher-series of books and features an extensive 3D game world,

explorable in 3rd person on foot and riding. Besides exploration, the game’s two

other major game modes are fights and scenes. Players can encounter a huge

variety of monsters, humans and/ or beasts to combat in real-time, and they have a

wide array of different swords, armors, potions, skills and more at hand to optimise

their chances. The other major game mode are the scenes: some NPCs can be

talked to or approached, and then the game switches into per-scene defined

cameras and animations with written and spoken text and choices playing on top.

18 CD Projekt RED. (2015). The Witcher 3: Wild Hunt. (4.01).
17 Bogost, Ian; Montfort, Nick. (2022). Levels.

16 Bogost, Ian; Montfort, Nick. (2009). Platform Studies: Frequently Questioned Answers. p.
4

10

The game’s quests are collections of events such as fights or scenes and goals

which are mostly driven by objectives displayed on the screen.

Given that the company had a big, self-funded budget (the game ended up costing

$67–81 million19), 150-25020 devs at their proposal and a lot of quests planned

(40521 ended up in the game), the developers as in every such game needed to

figure out how to produce so many quests of consistent quality in the given time

frame. A common design language is thus inevitable, which motivates the analysis

once more from a production studies point of view.

As I will argue, we are able to perceive well-developed languages for various

narrative purposes such as quests and scenes in REDengine 3, if such a language

is understood as a high-level set of recurring elements for building quests. If we

factor in that the analysis will build upon technological details and that TW3’s

success was to a large part due to its (side) quest design2223, concludingly this thesis

can provide precise technical reasons for the game’s success, which is interesting

for (technical) game designers or game scholars, who investigate video game

historiography. There is, lastly, a lot of material to be found in the modding context

for TW3 quests, as one of the major modding tool sets, the so-called radish modding

tools24, explicitly aims at creating new quests for the game.

24 In this thesis I use the following version, which is only available on the w3 radish tools
discord server: rmemr. (2022). radish modding tools (preview-v2022-12-26).

23 Van Ord, Kevin. (2015). The Witcher 3: Wild Hunt Review - GameSpot. Online:
https://www.gamespot.com/reviews/the-witcher-3-wild-hunt-review/1900-6416135/
(accessed: 16.03.2023).

22 Ingenito, Vince. (2015). The Witcher 3 Review - IGN. Online:
https://www.ign.com/articles/2015/05/12/the-witcher-3-the-wild-hunt-review (accessed:
16.03.2023).

21 Hopkins, Tom. (2018). Witcher 3: How Long it Is and How Many Quests There Are.
Twinfinite. Online: https://twinfinite.net/2018/01/witcher-3-how-long-how-many-quests
(accessed: 16.03.2023).

20 ibid.

19 Wikipedia contributors. (2023). The Witcher 3: Wild Hunt - Wikipedia. Online:
https://en.wikipedia.org/wiki/The_Witcher_3:_Wild_Hunt#Development (accessed:
16.03.2023).

11

Chapter 2. Game Engines as Tools

This chapter will explain the first basic realm of concepts, which is the idea of

engines as tools that support and influence execution and design. With these

concepts we will get a better grasp of the layer on which (quest) creators work and

the bridge that exists between engine and theory.

2.1 To Design for Execution

First of all, I will outline a meaning of the term “design”, which will serve as a basis

for further discussions.

In their foundational and summarising work on theories of design, Claudia Mareis

names two distinct layers of meaning: on the one hand, design refers to the

“preparing, aesthetically formative”25 process, on the other hand to the “resulting, as

a rule intentionally conceived and created, artefacts and services”26. This thesis will

focus primarily on the first layer – design as an activity – while the latter will appear

only as the resulting “work”, “game”, “quest” and so forth from which conditions for

design/ execution can be derived. I will now take a closer look at a selection of

definition attempts for the term "design".

The Cambridge Dictionary posits that to design means “to make or draw plans for

something”27. If, moreover, plans are “sets of decisions about how to do something

in the future”28, then it can be deduced that designing is all about decision-making

regarding a potentially not-yet-existent something. This fits with the second

understanding I will reproduce here. Political scientist Herbert A. Simon, who did a

lot of interdisciplinary work and became also known for their design research29,

describes designers as those who devise “courses of action aimed at changing

existing situations into preferred ones”30.

Both the dictionary’s and Simon’s wordings contain the idea of a designer’s main

task being to conceptualise the process for execution in order to achieve a set goal.

30 A. Simon, Herbert. (1996). The sciences of the artificial. 3rd ed. MIT Press. p. 123
29 Mareis, Claudia. Theorien des Designs zur Einführung. p. 14

28 Cambridge University Press. (2022). PLAN | meaning, definition in Cambridge English
Dictionary. Online: https://dictionary.cambridge.org/dictionary/english/plan (accessed:
16.03.2023).

27 Cambridge University Press. (2022). DESIGN | meaning, definition in Cambridge English
Dictionary. Online: https://dictionary.cambridge.org/dictionary/english/design (accessed:
16.03.2023).

26 ibid.

25 Mareis, Claudia. (2014). Theorien des Designs zur Einführung. 1st ed. Junius Verlag. p.
38. Translations by the author.

12

Don Norman however, a designer who is more interested in user-related aspects of

design, writes that “design is concerned with how things work. How they are

controlled, and the nature of the interaction between people and technology” 31.

While the dictionary and Simon follow the “design as an activity” semantic layer,

Norman focuses on the results of the design process: it is important for their

understanding that a designed product has certain qualities like the so-called

“affordances”, “signifiers”, “feedback” etc.32, all properties that in general improve

usability. Later in their book they introduce an entire agenda geared towards

“human-centred design”. In that regard Jesse Schell, author of the well-known The

Art of Game Design, might agree with them.

Illustration 2: Jesse Schell’s scheme33 to illustrate the network of game design concepts

presented in The Art of Game Design.

Over the course of their book on game design, Schell makes an elaborate argument

for the need to grasp the player’s experience in order to make informed decisions

33 Schell, Jesse. (2019). The Art of Game Design: A Book of Lenses. 3rd ed. CRC Press. p.
577

32 ibid. pp. 10-31

31 Norman, Don. (2013). The Design of Everyday Things. Revised and Expanded Edition.
Hachette UK. p. 5

13

while creating games. The visual accumulation of these arguments results in a

graphic which makes an excellent case for why mind-map-ping and searching for a

truth by examining connections in a language can indeed be fruitful: see Illustration

2. But more importantly for our discussion, the illustration shows that the concrete

design object, a game, is designed for a player and with the thoughts and behaviour

of a player in mind. Both Schell's and Norman’s conceptions have a strong

emphasis on evaluating the design artefact and its consequences, positing the

human end-user’s experience as the benchmark – as do many works in game and

design studies in general.

There are two reasons for why I do not use a result-oriented understanding of

design. The first reason is, considering the approaches I presented here, neither

Norman nor Schell offer too precise definitions for their result-oriented approaches34.

Secondly, product-focused design thinking draws away from how the design is

influenced by other conditions a designer must face, such as those of a tool or

cultural context – both of which are of explicit interest for this thesis.

My understanding will thus be following that of Herbert Simon, who formulated their

definition with no specific recipient in mind, and who operated in the tradition of the

interdisciplinary thinkers of the 1960s and 70s, who this thesis will meet again later

on.

Distinct to the idea of design is execution. I got inspired to differentiate by a CD

Projekt RED job listing, where it is stated that a quest designer is responsible for

“designing quests and implementing them”35. In a blog post, former Quest Director

Mateusz Tomaszkiewicz goes into more detail, explaining how the team indeed even

had a hard separation between designing/ pre-production and implementing/

production36, which confirms Mareis in their writing that “typically the phase of

planning precedes execution and industrial production”37.

A note on the term “implementation”: it is adequate for describing what is happening

in a game development studio, at this specific job – namely the transformation of a

plan for an in-game quest to a technical manifestation – but considering the wider

37 Mareis, Claudia. Theorien des Designs zur Einführung. p. 39. Translation by the author.

36 Tomaszkiewicz, Mateusz; CD Projekt RED. (2014). The devil is in the details | CD Projekt
RED's Official Blog. Online:
https://web.archive.org/web/20130116043021/http://cdpred.com/the-devil-is-in-the-details/
(accessed: 16.03.2023).

35 CD Projekt RED. (2022). Quest Designer | SmartRecruiters. Online:
https://jobs.smartrecruiters.com/CDPROJEKTRED/743999857102501-quest-designer
(accessed: 16.03.2023).

34 While Schell does formulate a clear definition of design in their book, it is not result-, but,
again, activity-oriented.

14

context of general design, the term “execution”, being less attached to programming

-matters, seems more fitting.

2.2 Tools and their “Grain”

In this section the line from design/ executions to tools, industrial production and

game engines is drawn.

2.2.1 Engines as Tools

In their essay on the history of industrial mass culture, Wolfgang Ruppert states that

“machine work” can be “sharply” distinguished to handicraft due to its structure38:

»While it [manual craft] comprises a largely holistic form of production by means of

tools and manual labour, production based on division of labour in the industry split

the >mental< processes of construction and design of an object from the production

by executing labourers with the help of machines.«

While I would argue that the division is not as sharp as they state – after all CD

Projekt quest designers are specialised but nonetheless do both design and

execution – Ruppert does draw attention to an important point that will be essential

to this research: to facilitate easier design and execution processes, we have got

tools.

Ernst Kapp proved to have a great influence on the philosophy of technology and

provided a well-known theory of tools in their work “Grundlinien einer Philosophie

der Technik” (1877):

»[..] thus tools are a replacement of the organ itself. With its help did the hand craft

further tools which in the technical imitation of the organic model - leaving the

original approximative form-sameness - barely indicated any form-sameness. But

they are nonetheless organic projections.«39

For Kapp, tools and metrics are a means to reach “the human’s highest purpose, [..]

to be measuring, a measurer and thinker!”40. Kapp, who emigrated to the USA

where they led a life as a farmer and practical scientist, certainly brought a sense of

40 ibid. p. 48

39 Kapp, Ernst. (1877). Grundlinien einer Philosophie der Technik. In: Ziemann, Andreas.
(ed.). (2019). Grundlagentexte der Medienkultur. Springer VS. p. 47. Translation by the
author.

38 Ruppert, Wolfgang. Zur Geschichte der industriellen Massenkultur. p. 15. Translations by
the author.

15

“US-american optimism”41 into their work, which led to a one-sided perspective.

Pondering about a new way to do philosophy of technology based on Kapp’s

thoughts, Karin Harrasser brings the perspective of faltering into the discussion.

They identify “enhancement and control of self and consciousness”42 at the core of

Kapp’s philosophy and, using prostheses as an example, ask why compensating

weaknesses is not regarded as a reason for using tools as well. In the end,

Harrasser argues to not only categorise those means as a tool, which increase a

human’s normalised base capabilities, but also those, which improve humans from

below that imaginary line43.

Now how do game engines and, more specifically, REDengine 3, fit into this notion

of tools? In The Unity Game Engine and the Circuits of Cultural Software, Benjamin

Nicoll and Brendan Keogh define a game engine as “a software tool that enables

real-time interactive digital content to run on different platforms”44. This technical

approach points to three important aspects of game engines: that they enable (us to

do something), their artificiality and their digital materiality.

Usage of game engines can be said to shrink, modify, extend and altogether enable

a human’s game making abilities. Not only does this – together with the artificiality

aspect – prove that game engines are indeed tools, since they are no organical part

of the human body and enable us to make (certain) video games. It also shows an

important argument for game engines and tools in general as a way to empower

people: Nicoll and Keogh exemplify this with Grace Bruxner, who almost single

handedly created a video game with the Unity Game Engine next to their studies45:

access to the engine gave them the freedom to not deal with the implementation of

lower-level systems such as a graphics engine. On a larger scale, we can see how

CD Projekt RED created its own REDengine to empower themselves, the studio, in

designing and implementing their visions.

The artificiality of game engines points to the fact that these pieces of software,

while facilitating the creation of designed artefacts, are also themselves designed

artefacts. Or, to quote Ernst Kapp: “One tool creates another”46. This opens up a

perspective onto a hierarchy and history of tools: a product is made with a tool, and

46 Kapp, Ernst. Grundlinien einer Philosophie der Technik. p. 48. Translation by the author.
45 ibid. pp. 1-3

44 Keogh, Brendan; Nicoll, Benjamin. The Unity Game Engine and the Circuits of Cultural
Software. p. 9

43 ibid. p. 155-156
42 ibid. p. 152

41 Harrasser, Karin. (2018). Schwächeln. Technikphilosophie, Techniksubjektivität,
Unvermögen. In: Harrasser, Karin; Timm, Elisabeth (eds.). (2018). Zeitschrift für
Kulturwissenschaften. Homo Faber. ed. 12. no. 2. pp. 149-159. p. 149. Translation by the
author.

16

every tool can be said to be a product itself, being made with one or multiple

“predecessor tools”. REDengine 3 was written and constructed with tools like the

programming language C++, Nvidia Hairworks and Scaleform GFx47. C++ is built on

top of the physical processor’s instruction set, while the processor was

manufactured in industrial factories. Seeing how building factories comes back to

manual labour done by construction workers, we can see how game engines might

be but one item, a “stepping stone” in a line of an extensive human out-reach to new

realms of possibility. We can see as well, how it becomes necessary for the human

users and the tools to manage the ever growing, ever farther-from-origin design

space. While it is beyond the scope of this thesis to discuss what the next items in

the line of tools with game engines as tool-parents are, it is in scope to address the

matter of highly abstracted “possibility realms”, and how humans manage to deal

with(in) them by means of constraints.

2.2.2 Grain and Design Constraints

Keogh and Nicoll adapt the woodworking metaphor of grain to describe how the

Unity Game Engine

»in a very abstract sense [..] has ‘patterns’ and ‘fibers’ — protocols, standards, and

affordances — that orient users towards particular design methodologies.«48

We can generalise this statement to arbitrary tools, since it is an inherent property of

any tool that it extends upon the base capabilities of a human and thus orients users

towards successfully working in the particular fields they are extending to.

Reformulating the above quote with the information now gained, it can be said that if

a tool is used to execute, then the tool’s grain will have predetermined some of the

preceding design activity.

The point of a tool orienting us towards a particular execution and thus a particular

design, is important. Depending on the concrete predeterminations – or: constraints

– different actions can be performed (at all, or more efficiently). For example: the

existence of a knob on a door allows a user to “grab” the door, an action impossible

or significantly harder to do without a dedicated knob. The grain of a knobbed door

thus orients a user towards opening by grabbing, whereas a not-knobbed door

orients towards opening by pushing.

48 Keogh, Brendan; Nicoll, Benjamin. The Unity Game Engine and the Circuits of Cultural
Software. p. 64

47 Witcher Wiki contributors. (2022). Modding the UI. Witcher 3 Modding. Online:
https://witcher-games.fandom.com/wiki/Witcher_3_Modding#Modding_the_UI (accessed:
16.03.2023).

17

According to Don Norman, constraints can be differentiated into four subclasses49.

First, there are physical constraints. These hinder and enable users by means of

physical laws, such as a key’s unique shape preventing use with other doors and a

coded search bar50 enabling faster finding. Second, cultural constraints. As Norman

explains, humans are furthermore governed by their conventions: if all major game

engines feature a component system with similar workflows, then a designer using

REDengine 3 for the first time will be able to draw from that knowledge and

understand the engine more quickly. Semantic constraints “rely upon our knowledge

of the situation and of the world”51. In the TW3 game files the following file exists:

/r4data/quests/main_npcs/mousesack.w2ent

Without any knowledge of video game jargon (e.g. “NPC”) and Witcher-lore (the

character Mousesack), one might assume that this file is about an important journey

as a sack of mice, while presence of aforementioned knowledge constrains the

possibilities such that one knows this to be the non-playable side character

“Mousesack” from the Skellige-main quest. Lastly, Norman presents logical

constraints. These work by means of the user’s reasoning capabilities: if the user

finds a quest block about objective change with four input gates labelled as in

Illustration 3, and if they did not know that objectives can be deactivated in the

game, then they will know now.

Illustration 3: Screenshot of an objective change node in the quest editor of the radish

modding tools.

Having seen now what grain and constraints each mean, how do these terms relate

to each other? If a constraint is “something that limits the range of a person’s

51 ibid. p. 129
50 Here I assume digital code and data to be physical matter.
49 Norman, Don. The Design of Everyday Things. p. 125

18

actions”52 and grain is the property of something being “orienting towards”53, then I

conclude: both terms state a fact, namely the action-boundedness, but “grain”

explicitly includes the implication that limiting a user’s actions changes their stance,

approach or relation to the tool.

Working with goals such as deadlines, product vision, financial budget and personal

energy (to name four important ones), it is in the interest of any user to work in such

a way that design and execution are as easy as possible without departing from

their goals. Now easiness is relative to a worker’s skill in doing something, and thus

the value of tools by Kapp’s/ Harrasser’s definition becomes evident since they can

locally increase the effect of a skill.

Concretely, the constraints tools offer manifest as shortcuts during working activities.

Instead of having to use our hands, we can use a shovel to move much more earth

in the same span of time. Instead of having to think philosophy from the ground up,

we can build on and modify an existing theory. Instead of having to decide each

feature and parameter of a character controller, we can use the default one with its

default settings in Unreal Engine 5 and then improve it and adapt it to our (specific)

needs. The omission of steps in between allows workers to focus on or think of other

matters, a principle which powered specialisation and modern ideas and

phenomena of constant growth by means of technology54.

The first implication for the designer is that they need to consider the tools at hand

during their plans. Depending on the given selection, that is, the problems each tool

allows to solve easier, a designer might plan more ambitious. But equally, a designer

might need to think about a non-intuitive way to solve a problem, because of a tool’s

constraints. At this point it becomes clear why practice-oriented design advice often

advocates “out-of-the-box thinking” and creative problem-solving. A tool does not

only help us solve a problem, it will also solve the problem in a certain,

predetermined manner – in ways which exclude other ways.

Tool users are in between the hard facts given by physical constraints, the shifting

borders of cultural conventions and concrete designers' ideas for a specific game

design problem. Consequently they might create a shared design language based

on what the tool allows, pinning the value of some variables of the problem and

creating a tighter design that leaves enough space to still let the intended design

54 Here understood as a term semantically close to “tools”.
53 See the definition of grain cited above.

52 Cambridge University Press. (2022). CONSTRAINT | meaning, definition in Cambridge
English Dictionary. Online: https://dictionary.cambridge.org/dictionary/english/constraint
(accessed: 16.03.2023).

19

unfold. It is the origin of such a shared language in a tool’s inherent language, which

I would like to explore lastly in this chapter in order to then explain what I will

formulate in Chapter 4.

2.3 Game Engines’ Languages

In 2002, when the field of game studies was forming and literature on designing

games was rare, Greg Costikyan published a paper titled: “I Have No Words & I

Must Design: Toward a Critical Vocabulary for Games”55. In it, they discuss the

problem of natural language terms like “gameplay” and “interactive”, whose

semantics are too manifold and unclear for them to be productively used in

conversation. Now this is a problem, because scholars and developers by the very

nature of their respective work – creating a highly integrated work with other people

and evolving the pool of human knowledge – need to be able to communicate about

the subject of video games. Building on structuralism as a scientific approach and

grain56 as a decisive property of game engines as tools, I will present a kind of

language specialised in the domain of engine technology: object languages and,

derived from that game engine languages.

2.3.1 Language as a Design Studies Lens

About 30 years earlier than Costikyan, Herbert A. Simon notes that design manifests

in many disciplines. In fact, it is hard to imagine any profession, in which

decision-making is irrelevant, posing the question, how any concept of design can

be made productive for discussing concrete issues. In their paper on the relation

between theory and design, Ken Friedman formulates the following: “Applied

research adapts the findings of basic research to classes of problems”57. Doing so

has advantages: picking a specific class of problems (like quest design)

automatically decreases the number of variables to consider and thus helps in

grounding a theory. Furthermore, by adapting general ideas for specific applications,

one preserves the properties the general concepts had. It might be the potential of

such overarching theories covering large concrete space, which inspired the

scientific movement that is now called structuralism.

Structuralism can be regarded as

57 Friedman, Ken. (2003). Theory construction in design research: criteria: approaches, and
methods. In: Cross, Nigel (ed.). (2003). Design Studies. vol. 24. no. 6. p. 510

56 The metaphor, not the wheat!

55 Costikyan, Greg. (2002). I Have No Words & I Must Design. In: Mäyrä, Frans (ed.). (2002).
Proceedings of Computer Games and Digital Cultures Conference. vol. 1. Tampere
University Press.

20

»the attempt to provide the subject’s thought with fixed meaning by seeking to locate

this subject in a finite and thus basically overseeable system, in a taxonomic order of

elements and oppositions«58.

This way of thought is interested in the potential of fixed meaning: it generates, in

extreme cases, a “finite context for analysis”59, a frame in which solving problems is

but an issue of finding the applying rules of symbolic manipulation in the correct

order and manner, not unlike mathematical proofs and algorithms developed in

computer science.

In studies of design, structuralism became visible when the studies transitioned

away from early 20th-century’s “artistic questions on style and form-and-function

debates”60, and in the 1960s/ 70s “experienced an interdisciplinary extension

through planning- and problem-solving research and postmodern structuralist

influences”61. An example of this tradition can be found in Herbert A. Simon’s notion

of design, which I discussed in Section 2.1. Having chosen a definition close to

Simon, I thus grounded this chapter’s writing in structuralist thought and in the

design discourse of the 1960s and 1970s, which, according to Mareis, “was

constitutive for the systematisation of theories and methods of design and its

scientification [..]”62.

“Rightfully linguistics is declared as the origin of structuralism” writes Gilles Deleuze

in their handbook on “recognising structuralism”63. This is one of many motivations

to take a closer look at language as a lens for discussing REDengine 3’s grain.

As a part of establishing the idea of an engine’s language, I will be able to argue

why this is a useful conceptual tool for analysing the collective intended effects of

the creators, which is useful for both scholars and creators. In other words, it is used

as a lens, as a selected among many perspectives to perceive a game through and

test against64 – even though language as a lens is more abstract than the lenses in

The Art of Game Design.

Another key reason for my interest in engine languages is that they connect the

study of games to their production and to (human) production itself as an activity -

64 cf. Schell, Jesse. The Art of Game Design: A Book of Lenses. p. xl

63 Deleuze, Gilles. (1992). Woran erkennt man den Strukturalismus? Merve Verlag. p. 8
Translation by the author.

62 ibid.
61 ibid.
60 Mareis, Claudia. Theorien des Designs zur Einführung. p. 31. Translation by the author.
59 ibid.

58 Pias, Claus. (2010). Poststrukturalistische Medientheorien. In: Weber, Stefan (ed.). (2010).
Theorien der Medien. 2nd ed. UVK Verlagsgesellschaft mbH. p. 252. Translation by the
author.

21

we already saw the introduction of design and tools as important framings - which by

means of the language term will once more connect to the engine, contributing to

the golden thread of this thesis being formed and theory and practice strung

together.

To make a last – and maybe the most important – motivational point: a major

purpose of this text is to “let the engine speak”, and see how design arises from the

instrument at hand65. In game studies, games are often viewed from the perspective

of the game experience (while playing it). This has the advantage of directly

addressing what many find most interesting about media: the mediated experience,

happening at the human player. Following this pathway leads us to identify, infer and

differentiate mechanics, systems, scenes, places and so forth based on what we

perceive during playthroughs. A thorough analysis however might require more than

a reconstruction or deduction of the game’s nature: it might indeed require looking at

the construction of the work itself, which happens when game developers design

and implement e.g. quests and in the second step when the game executable is

running, taking the game files and player input as parameters. This motivates taking

a look at the file formats, scripted code, hard-wired reference systems and so on

contained in the digital asset that is TW3 and understanding what kind of language

these elements form.

2.3.2 Boudrillard’s Object Language

Language, in this work, is understood as “a system of communication”66, or: the

amalgamation of any conditions structuring communicative acts in a given context.

Typically, we refer to natural language when using “language” as a term and mean

the speech used by humans to communicate with each other (and animals and

machines, in some (edge) cases67). In this work, however, I am interested in a

different kind of language: the engine’s own language, the language of a (possibly

inhuman) object. This notion of an object’s language was developed by Jean

Boudrillard in The System of Objects:

»Every transition from a system to another, [..] every commutation within an already

structured system, every functional synthesis, precipitates the emergence of a

67 I am referring to human-machine communication where the machine accepts and
produces natural language-like content, such as ChatGPT.

66 cf. Cambridge University Press. (2022). LANGUAGE | meaning, definition in Cambridge
English Dictionary. Online: https://dictionary.cambridge.org/dictionary/english/language
(accessed: 16.03.2023).

65 cf. Engell, Lorenz; Siegert, Bernhard. (2012). Editorial. In: Engell, Lorenz; Siegert,
Bernhard. (2012). ZMK Zeitschrift für Medien- und Kulturforschung 3/1/2012: Entwerfen.
Meiner. p.5

22

meaning, an objective pertinence that is independent of the individuals who are

destined to put it into operation; we are in effect at the level of a language here«68

Boudrillard thus deducts the language-like quality of structured objects by observing

how syntheses into larger structures in such objects generate meanings. Another

argument for object languages stems from Walter Benjamin, who posed that “[t]here

is no happening or thing neither in animate or inanimate nature, which does not

participate in some manner in language, for it is essential to each, to communicate

its content”69.

Benjamin is able to write such a general statement since they have a looser

understanding of language than Boudrillard, who finds that some objects are not

stable enough in their structure to justify saying they have a language:

»For technology, unlike language, does not constitute a stable system. Unlike

monemes and phonemes, technemes70 are continually evolving«71

Boudrillard furthermore argues that all our “practical objects” are “in perpetual flight

from technical structure towards their secondary meanings, from the technological

system towards a cultural system”72, concluding that an object language “cannot be

described scientifically unless it is treated in the process”73.

I concur with Boudrillard only to some degree at this point. While I agree that the

stability of an object should be considered when it comes to its structure – which is

exactly that which endures – I would, for one, not say that technology is different to

language in that regard. For language changes as well or is at least able to do so; it

is never completely stable, complete and set for eternity. On the other hand, certain

variants of a language can become stable to the point that people use them to

communicate. This becomes most evident when looking at for example the

development from older versions of spoken English to its current state or the

explicitly labelled versions of programming languages like C++. Regarding the

language of the technological object TW3/ REDengine 3, the stability-matter came

to light for instance during the advent of patch 4.0, which was released during the

73 ibid.
72 ibid. p. 14
71 Boudrillard, Jean. The System of Objects. p. 16
70 A kind of atomic unit of object languages in Baudrillard's terminology.

69 Benjamin, Walter. (1916). Über die Sprache überhaupt und über die Sprache der
Menschen. Online:
https://signaturen-magazin.de/walter-benjamin--ueber-sprache-ueberhaupt-und-ueber-die-sp
rache-des-menschen.html (accessed: 16.03.2023). Translation by the author.

68 Boudrillard, Jean. (1996). The System of Objects. 1st ed. Verso. p. 13

23

development of this thesis. The state of game patch 1.32 was for a long time the

latest patch (from 2017-2023) and determined a stable object language. When patch

4.0 was released, the language respectively evolved – but many of TW3’s/

REDengine 3’s aspects did not change: for example, the way classes with multiple

components are saved in a binary format (called CR2W) has been the same since

TW3’s release, thus enabling modders to reverse engineer the technology CR2W.

Based on this, stable modding tools could be built, to read and manipulate the

respective files.

Boudrillard’s mentioning of the “flight towards secondary meanings”, imposed by

culture and practical usage, marks a core point of their position. They were

particularly interested in the (usage-)context of objects and argued that objects

being culturalised makes structural analysis alone insufficient, since the object

language then becomes intertwined with and changed by the specific practices

surrounding the object. I agree that this indeed obfuscates and can additionally

destabilise the object’s language, but observing the TW3 modding scene, I found

that many workflows, tools and routines changed only very slowly or not at all, thus

not changing many meanings assigned by this cultural context as well. Nonetheless

this context exists and developed its own stance towards how the object of interest

is regarded, which is why Chapter 3 will provide a dive into the modding

circumstances.

Having discussed what an object’s language is, I now want to close in on the

contents of such a language. Boudrillard uses the abstraction of a technological

plane to point towards the “technological reality of objects”74, such as the code and

data forming REDengine 3 and TW3. Elements of this plane are represented by

semantic and functional units Boudrillard calls technemes, analogous to the

phonemes75 of natural language.

»the elements of a coherent system that is never directly experienced, never

apprehended at the practical level. [..] by analogy with linguistic phenomena, those

simple technical elements different from real objects -upon [sic] whose interplay

technological evolution is founded might well be dubbed ‘technemes’«76

These technemes, then, are what constitutes the atomic units of an object’s

language. In one of Boudrillard’s examples, an “internal-combustion heat engine”

features a cylinder head for cooling, a techneme which, combined with a “ribbing”,

76 Boudrillard, Jean. The System of Objects. p. 13
75 Phonemes are meaningful classes of bare sounds used in natural language.
74 ibid. p. 11

24

converges to an undistinguishable structure77. In a game engine, mesh and texture

as technemes can converge for example to a character model and are no longer

visible from the outside as distinct units.

Ian Bogost developed a somewhat similar notion with their unit operations, though

one can find at least one crucial difference between them: Bogost understands unit

operations as “modes of meaning-making that privilege discrete, disconnected

actions over deterministic, progressive systems”78, which on the first glance makes

the two concepts clash immediately in the fact that unit operations have a

processual nature while technemes are (by tendency) more static, delimited

elements of a structure. On the other hand we can find that technemes, like unit

operations, focus on the isolation of atomic features in a larger object of interest.

Furthermore and lastly, both concepts integrate that there is a semantic aspect to

such an atomic feature.

Bogost is interested in performing a “shift away from system operations”79 and

concentrates on developing a space where computer games and literature can be

analysed with a common lens. This thesis does not have much to add to this call to

action; much rather it is building on these thoughts by considering the entire range

from processual and inelastic atomic features to complexer integrations and

circumstances while analysing its subject.

A conceptual tool to grasp said complexer integrations in (object) languages is the

idea of a pattern. Patterns were popularised in science and design by architect

Christopher Alexander in 1979 mainly through the book A Pattern Language, in

which they presented 273 patterns to solve certain architectural issues. In the book's

prequel, The Timeless Way of Building, Alexander draws a line from a “nameless

quality” in our lives, to how this quality can be effectuated by means of patterns, to

how a collection of interrelated patterns forms a language. While Alexander has

been criticised for romanticising spaces where people live, and advocating a

regression to older architectural styles, their idea of patterns as building blocks for

larger structures and concepts of great generative potential gained great influence:

not only architecture, but also in other disciplines such as software development or

sociology. In game design literature, Alexander’s ideas are echoed by popular books

like Schell’s The Art of Game Design or Totten’s An Architectural Approach to Level

Design; more recently, Chris Barney wrote an entire book (Pattern Language for

Game Design) solely concerned with applying the idea to game design.

79 ibid.

78 Bogost, Ian. (2006). Unit Operations. An Approach to Video Game Criticism. The MIT
Press. p. 3

77 ibid. p. 12

25

The essence of patterns is how they designate repetition. Alexander comes to

recognise them by pondering architectural “characters” and concluding that these

are determined by those events and architectural features that appear more often

than others80. They then labels these structural repetitions patterns:

»Evidently, then, a large part of the “structure” of a building or a town consists of

patterns of relationships.«81

The success of this term can be attributed to several factors. For one, it is a general

term, since structure is one of the fundamental aspects of our perception and

repetition as a phenomenon far from scarce. Secondly, patterns are scalable. Unlike

technemes or unit operations, which can be regarded as smallest patterns

(assuming a level of scale we chose not to come under), patterns function on the

entire scale range. This becomes evident in A Pattern Language, which contains

patterns, for instance, for the positioning of windows and the composition of town

districts alike. And lastly, the term “pattern” is relatively easy understood, with it

being no academic compound word like “unit operation” or neologism like

“techneme”.

The introduction of patterns, unit operations, technemes and their interplay in an

object language concludes this excursion into theories of structure and language.

The last paragraphs of this subsection return to and at last connect my notions of

design, tools and language.

2.3.3 Tool Design Languages

In this thesis, I will use the term of a tool’s design language, in order to refer to those

technemes, unit operations and patterns of a tool’s language, which drive the

designer to choose particular workflows or implementations. In short: a tool’s design

language is the grain subset of the tool’s language.

I construct this term to further delimit the focus of the analysis by means of wording,

and because what is signified by this term is at the heart of this work: tools influence

the planning and execution of content that they were made for, and the collection of

a tool’s influencing aspects is a kind of language via which one might understand

the tool.

81 ibid. p. 87

80 Alexander, Christopher. (1967). The Timeless Way of Building. Oxford University Press.
pp. 66-68, 87

26

A tool’s design language defines a collection of the tool’s paths of least resistance to

solving design problems and, more importantly, paths of less resistance than when

the developers were constructing solutions without the tool. As discussed in Section

2.2, design languages (the tool’s grain) encourage standardisation and thus access

to more specialised designs the more inflexible they are. Companies like CD Projekt

RED exploit this fact when building their own engines. Writers, cinematic designers

and quest designers, for instance, can formulate what kind of grain they require from

a quest editor to be oriented towards workflows that are efficient. In conversation

with tools programmers and game directors a ressource (time, money, ..)-sensible

solution can then be devised and implemented for example in a pre-production

stage, to allow for the high-quantity main production phase to work efficiently. For

Cyberpunk 2077, CD Projekt RED developed a custom scene editor in order to be

able to facilitate their vision of a first-person game with seamless cutscenes82.

At times, video game developers publish (parts of) their tool sets such that modders

may modify or extend the game developed with the tool, or develop a new game

entirely. In the next chapter I discuss the case of the partly released game engine

REDengine 3 as a storytelling tool as well as both chance and headache for

modders.

82 Pierściński, Filip. (2022). Introduction of the Interactive Cinematics in 'Cyberpunk 2077'.
Online: https://www.youtube.com/watch?v=exqPwGIxryI (accessed: 16.03.2023).

27

Chapter 3. Modding Stories for The Witcher 3

This chapter provides a contextualisation and short explanation for the tools I am

inspecting (REDengine 3 and modding tools), and the method (modding) by which

the inspection is done. Connecting to the thesis’ goal, I will put a focus on what

conditions the context induces. Having closed the rather abstract framing in Chapter

2, the intention behind Chapter 3 is to provide a consecutive, accelerated

concretisation of my lens on the object of interest.

3.1 Video Game Storytelling

First of all, I will investigate the narrative game design context.

3.1.1 Short History of Storytelling

Narrative as a mode of human communication83 has a long tradition, starting with

the old practice of oral and gestical storytelling which was and continues to be

deeply connected to human culture84. One of the side effects of this thesis will be

that it demonstrates how some older storytelling traditions are – in a way – kept up

and developed in the aesthetics of particular new media such as video games.

Other older, but important narrative forms include for instance theatrical pieces and

literature. Theatre, which has its first predecessors in egypt performances dating

back to 2000 B.C., tells stories with more focus on the visual arrangement and

design of actors or material, as well as their change of locations on the stage. One

of theatre's major successors is film, a medium which lost the immediate character

of theatre but gained lots of possibilities in return: for example to make hard cuts

between one image and the successor or to steer the audience's look by means of

the camera: all based on the fact that film, in opposition to theatre, is not live, but

pre-built and saved on for example a Compact Disc. When the letterpress was

invented during the Renaissance, soon written stories gained more momentum as a

part of human culture, and through the nature of the medium – distinct symbols fixed

on a page – emphasised a more structured experience of the narrated work.

All of these forms pose certain conditions on a storyteller, who is a designer and

executor in their own right: they plan a story (e.g. using a storyboard and script in

84 National Geographic Society. (2022). Storytelling and Cultural Traditions. Online:
https://education.nationalgeographic.org/resource/storytelling-and-cultural-traditions
(accessed: 16.03.2023).

83 cf. Crews, Frederick C. (1977). The Random House Handbook. 2nd ed. Random House.
p. 13

28

film) and execute that plan (the actual shooting), with both not necessarily

happening one after another. To produce these forms, various devices exist, and

these devices can be considered tools: the stage decoration in theatre allows the

storytellers to convey the scenery visually and without the human actors. Different

devices imply different design languages. Whether a human uses a stick or their

voice to convey the hubris of a character changes not only how listeners experience

the story, but also how the storyteller (potentially ad-hoc-) designs their piece in the

first place. Thus we can see how the thoughts mapped out in Chapter 2 transfer to

storytelling.

Modern manifestations of storytelling include for example narrative movies or video

games, with both starting to become important during the 20th century. In this work I

am interested in the video game medium and its genre of open world,

narrative-driven role playing games (RPGs).

Video games are marked by their distributed authorship, which Stephanie C.

Jennings understands as

»the interplay of negotiated capacities of a number of actors (including but not

limited to developers, publishers, and players) to create the content, structures,

form, and affordances of video game works«85.

This quote highlights a separation between stakeholders who typically affect the

video game experience before the players' involvement, such as developers and

publishers, and those who interact with the final product, which are the players. This

allows us to imagine a spectrum of influence on the video game experience. On one

end of the spectrum reside elements that are mostly influenced by the developers/

publishers, and on the other end are elements mostly determined by players.

Using this spectrum, storytelling methods in video games can be compared and

discussed. Pre-rendered cutscenes can usually be said to have a stronger

developer-imprint compared to other means. Regular dialogue scenes as seen for

instance in The Elder Scrolls V: Skyrim offer a bit more control to the player.

85 Jennings, Stephanie C. (2016). Co-Creation and the Distributed Authorship of Video
Games. In: Valentine, Keri Duncan; Jensen, Lucas John (eds.). (2016). Examining the
Evolution of Gaming and Its Impact on Social, Cultural, and Political Perspectives. IGI
Global.

29

Illustration 4: Screenshot of a dialogue choice in The Elder Scrolls V: Skyrim86. Depending on

the option chosen by the player, a different chunk of speech is played.

While locked in movement and to some degree in camera angle, players may, by

means of dialogue choices, get the chance to influence the traversal of the speech

graph lying underneath such a scene. Environmental storytelling is more

collaborative: while developers indeed need to – as Henry Jenkins notes – design

the space87 in order for anything to be there, the spatial experience would never

occur if the player did not look into the respective location, bring their own decisions

on e.g. the exact path or camera angles into the experience and possibly even try to

interpret what they find. In the middle of the spectrum, quests can be located. These

often provide players with pre-defined objectives and events, but let the player move

the avatar themselves in between. The developer-opposite side of the spectrum is

closed with stories that, in extreme cases, are told by the player alone: Reddit-user

“RazzDaNinja” crafted a character named “Skullhunter” who ignored their fate of

being the heroic Dragonborn and chose to excel in fighting ever more powerful

enemies. The character required a set of rules for their playstyle:

»I wasn’t allowed to use magic spells or buy weapons. Pure tactics, magic staffs and

physical abilities only. I had to either craft or loot weapons and potions. No stealing.

No killing defenseless civilians. No stealth archer (I could only melee stealth kill).

Always wear a helmet that covers my face, removing it only for 1-on-1 duels.«88

The object of study in this thesis is quests in video games, so I will conclude my

discussion of general storytelling methods with this area, before finally moving on to

modding and the creation of such content within quest systems.

88 RazzDaNinja. (2020). [Comment]. Reddit. Online:
https://www.reddit.com/r/skyrim/comments/emlue0/player_stories/ (accessed: 16.03.2023).

87 cf. Jenkins, Henry. (2004). Game Design as Narrative Architecture. In: Wardrip-Fruin,
Noah; Harrington, Pat (eds.). (2004). First Person. New Media as Story, Performance, and
Game. MIT Press. pp. 118-130. p. 121

86 Bethesda Game Studios. (2007). The Elder Scrolls V: Skyrim (1.1).

30

3.1.2 Video Game Quests

For Jeff Howard, a quest is “a journey across a symbolic, fantastic landscape in

which a protagonist or player collects objects and talks to characters in order to

overcome challenges and achieve a meaningful goal”89. This formulation shows

some key aspects of video game quests.

For one, a quest often is a certain journey a player is motivated to do90. Howard

talks about the player’s experience of a quest or the actualised quest91, which has

the seriality that is part of the idea of a journey: in quests like “A Towerful of Mice”92

from TW3, the player as Geralt can decide many aspects, like from which direction

they approach Fyke Isle or whether to trust the potential monster Anabelle. But they

will, in any way, always experience one consecutive subset of events in one

playthrough if they do not modify their progress to be set to some earlier state (by

e.g. reloading): they will always first enter the island and then talk with Anabelle, for

example.

Meanwhile, a quest can also be understood as an interrelated collection of events, a

template lying in the game files or in the working memory waiting to be instantiated

by the game or the player. I will call this concept the template quest, which we will

find formalised as a graph structure in REDengine 3 in Section 4.1. The concept of

pacing, that is, the course of tension over time93, illustrates the difference: the player

usually experiences one pacing since they experience the quest once. But since

often quests do not fully, but only partly determine a player’s experience by e.g.

letting them decide how to approach a location or whether to complete an optional

objective or not, multiple pacings need to be taken into consideration by designers94.

And these are best analysed by determining which paths may be actualised within

the template quests’ events and their relations.

Quests are also characterised by their goal-driven action. In the above definition this

is incorporated by the notion that a video game quest’s function is to allow a player

to “overcome challenges and achieve a meaningful goal”. Howard brings up three

classes of meaningful motivation provided by quests: initiation denotes a player

experiencing a “gradual movement up through formalised ‘levels’ of achievement”95.

95 Howard, Jeff. Quests. Design, theory, and History in Games and Narratives. p. 26
94 ibid.

93 Sasko, Paweł; Digital Dragons. (2017). Life, Love and Quest Design. Anatomy of Quests
in The Witcher 3: Wild Hunt. Online: https://www.youtube.com/watch?v=g5TH9KakBDw
(accessed: 16.03.2023).

92 Witcher Wiki contributors. (2023). A Towerful of Mice. Online:
https://witcher.fandom.com/wiki/A_Towerful_of_Mice (accessed: 24.03.2023).

91 cf. ibid. p. 1

90 cf. ibid. p. 6: “a ‘journey’ is the spatial movement and temporal duration entailed by a
quest”

89 Howard, Jeff. Quests. Design, theory, and History in Games and Narratives. p. xxi

31

For instance in the form of encounters set up in specific quest moments – boss

fights in their extreme – players are given the goal to challenge themselves. For

fights, REDengine 3 provides two generic mechanisms, communities and

encounters, which I will discuss in Section 4.2. Narrative motivation stems from the

question “What happened/ happens/ will happen?” and is related to quests

insomuch as the sequential nature of actualised quests allows the player to e.g.

speculate about upcoming events surrounding a character. We will see how

designers can micromanage when which events are happening in Section 4.1.

Thematic motivation is present when the player “acts out a set of ideas that

comment upon”96. Howard brings forth the example of “basic conflict between good

and evil enacted in the game’s battles”97, but we will see how REDengine 3/ TW3

(do not) allow for much more interesting morales in Chapter 4. As Howard shows in

a later section, such “purposive action” can be supported by explicit objectives that

are given to the player in a quest log98. In Illustration 5 the active quest “Nothing You

Can Possess” from The Elder Scrolls IV: Oblivion entails several subsequent explicit

objectives which are written down as paragraphs of text.

Illustration 5: Screenshot of the quest log in The Elder Scrolls IV: Oblivion99.

There are also implicit objectives, that is, objectives which are heavily suggested,

but which are not explicitly stated anywhere. Common forms of this are landmarks

or motivations set up in “show, don’t tell”-cutscenes. Throughout Chapter 4 we will

99 Bethesda Game Studios. (2007). The Elder Scrolls IV: Oblivion Game of the Year Edition
(v1.2.0416).

98 ibid. pp. 108-109
97 ibid.
96 ibid. p. 28

32

see how motivation can be enticed by a variety of means with REDengine 3, but, in

comparison to the game built on top, it will become evident how TW3 heavily leans

to an “explicit objective” style.

One key term for Howard is “symbolism”. Observing the discourse of game theorists

and designers at the time, they found them to “increasingly focus on meaning and

interpretation”100. So, interestingly, a noticeably subset of views about games

underwent a similar shift towards semantics around 2004 like design did in the mid

20th century (see the discussion in Section 2.3). This connection is underlined by

the fact that Howard brings up Ian Bogost’s unit operations as a prime example for

this shift: they use a major point from Unit Operations – the argument that “games

and literature can meet at the issue of interpretation”101 – to support their thesis that

quests are inherently meaningful and that their connection to quest narratives in

literature is indeed substantial. For the analysis of quests, Howard argues that unit

operations are not sufficient, since quests are progressive and systemic, which are

“two qualities that he [Bogost] denies to units”102. This supports that I chose the lens

of “language”, including the much more flexible patterns, to analyse the tool in which

quests are defined.

Howard writes in their quest definition that a player “collects objects and talks to

characters” to reach their goals. While these are not the only means of progressing

a quest, they are two major categories of entities which the player might interact

with. Objects, in Howard’s understanding, encompass minor, functional and quest

items. Minor objects are “largely useless” to the player, but “give a sense of

realism”103. Functional objects modify the player’s abilities in some way (such as

increased movement speed). For quest items, Howard has no final explanation, but

they propose that they “play an essential role in the back stories behind a quest” or

“possess great magical power within the rules of the game”104. The second wording

has a seemingly unnecessary focus on magic, but, going for a more

progression-logic oriented approach might be reformulated towards more clarity like

this: quest objects have special rules defined for them which make them relevant for

a quest’s progression. In Sections 4.1 we will see how the modularity of entity, item

and reward definitions in REDengine 3 allows for the three kinds to be flexibly

mixed, attributed and used, motivating designers to come up with interesting objects

for their quests. For characters, a similar principle holds. TW3 Quest designers can

profit heavily from several specialised functionalities provided by character entities,

104 ibid.
103 ibid. p. 77
102 ibid. p. 4-5
101 ibid.
100 ibid. p. 4

33

such as the modularity of body parts, sound and effects, clothing, hair and a generic

system for poses, gestures and other animations. Much of this is based in

REDengine 3’s component system, which is similar to that in other engines like the

Unity Game Engine or Unreal Engine. I will discuss all such matters in Section 4.3.

Lastly, following Howard’s definition, a video game quest happens in a player’s

traversal of a virtual landscape. Given this, a first question might be how exactly

that, which is deemed a quest in a given engine, can influence the world and how

the world can in return influence the quest. For some of these use cases,

REDengine 3 suggests very rigid patterns like the weather system, while it provides

an extremely easy and flexible solution for player-wait-events with the integration of

trigger boxes into the quest system. I will discuss relations between landscape and

quest in Section 4.2. Landscape has also a much more inherent and concrete effect

on quests, since by the mere form of landscape, quest experiences can vary greatly.

A small island in the middle of the Sea will have a different effect than an enclosed

valley in the mountains. This work is often attributed to level designers and will not

be followed up on further here.

This concludes the introduction to the video game and storytelling aspect I am

examining.

3.2 Modders under CD Projekt RED Conditions

This section covers developer CD Projekt RED, the concrete game and engine they

created, as well as the modding community forming around them.

3.2.1 Work Optimisation at CD Projekt RED

CD Projekt RED is a polish, stock exchange-listed, independent105 game

development studio. The umbrella company, CD Projekt, started as an importer and

localiser for the Polish video game market in the 1990s106 .

In 2003 the predecessor of CD Projekt RED was founded, which started the

development of The Witcher, based on the novels by Andrzej Sapkowski and built

with a heavily modified version of BioWare’s Aurora Engine. The game was released

in 2007 and was followed up on with The Witcher 2: Assassin’s of Kings (TW2), for

which the studio for the first time developed their own internal REDengine, whose

successor REDengine 2 for the same game supported multiple platforms.

106 CD Projekt. (2023). History - CD PROJEKT. Online:
https://www.cdprojekt.com/en/capital-group/history (accessed: 16.03.2023).

105 In the sense that the company has never been bought up.

34

Year Title Engine

2007 The Witcher Aurora Engine

2011 The Witcher 2: Assassin’s of
Kings

REDengine 1, 2

2015 The Witcher Battle Arena Unity Game Engine

2015 The Witcher 3: Wild Hunt REDengine 3

2018 Gwent: The Witcher Card
Game

Unity Game Engine

2018 Thronebreaker: The Witcher
Tales

Unity Game Engine

2020 Cyberpunk 2077 REDengine 4

TBA The Witcher Remake Unreal Engine 5

TBA New Witcher Trilogy Unreal Engine 5+

Table 2: Listing of past and future video games released by CD Projekt RED where the

underlying engine is known107108109110.

For the highly successful (at least commercially) TW3 and Cyberpunk 2077,

REDengine 3 and REDengine 4 were developed respectively. In 2022, the studio

announced that for future projects they are developing on Epic Games’ Unreal

Engine 5 (and future versions)111.

As a company, CD Projekt RED is, among other things, led by economic interest: to

generate revenue and thus, to produce high quality games as fast as possible. In

Section 2.2 we saw how the very nature of tools is their ability to shortcut or enable

work routines by providing new ways of doing, which motivates any game developer

to optimise their selection, creation and usage of tools. This shows quite prominently

in CD Projekt RED’s former, current and future video game engines and in the job

positions associated with them.

111 CD Projekt RED. (2022). A New Saga Begins. Online:
https://www.thewitcher.com/en/news/42167/a-new-saga-begins (accessed: 16.03.2023).

110 Wikipedia contributors. (2022). Thronebreaker: The Witcher Tales. Online:
https://en.wikipedia.org/wiki/Thronebreaker:_The_Witcher_Tales (accessed: 16.03.2023).

109 Wikipedia contributors. (2023). Gwent: The Witcher Card Game. Online:
https://en.wikipedia.org/wiki/Gwent:_The_Witcher_Card_Game (accessed: 16.03.2023).

108 Wikipedia contributors. (2021). The Witcher Battle Arena. Online:
https://en.wikipedia.org/wiki/The_Witcher_Battle_Arena (accessed: 16.03.2023).

107 Wikipedia contributors. (2023). CD Projekt. Online:
https://en.wikipedia.org/wiki/CD_Projekt (accessed: 16.03.2023).

35

Table 2 shows that in addition to a major engine (REDengine/ Unreal Engine) for

“story-driven role-playing games”, being arguably their main focus112, CD Projekt

RED also uses the Unity Game Engine to produce titles. This is a clear indication

that the company exploits engine grain: the Unity Game Engine is apparently better

suited for a greater variety of genres, while the solutions offered by REDengine and

Unreal Engine for 3D character-based, narrative open world games are fitting for

their mainline games.

CD Projekt RED’s switch to Unreal Engine demonstrates another interesting point

besides putting emphasis on the importance of grain. Nicoll and Keogh write that the

Unity Game Engine’s grain is relational: it is not only shaped by the engine’s key

stakeholders and engineers, but also a wider community of plugin-developers, asset

pack providers, tutorial writers and so on113. This also applies to Unreal Engine,

having the associated Unreal Marketplace, the Epic Developer Community Forums

and countless tutorials on platforms such as YouTube. REDengine 3’s grain on the

other hand could be said to be closed: there is no platform for choosing and

automatically integrating custom content packs, its development is intransparent in

that no details about new features are distributed and, maybe most importantly,

there exists no official, publicly available graphical toolset to build games for it. I will

demonstrate further down how TW3 modders and online platforms are making the

engine more relational – independently of CD Projekt RED – by developing and

adopting content management systems, tools and common workflows.

A second major tool-related field of optimisation for CD Projekt RED consists of

tailoring jobs towards tool workflows, in analogy to and together with tailoring these

workflows towards (more efficient) solutions of game development problems. This

complex, intertwined process stems from the rise of industrial manufacturing in the

19th century, when “mechanical imitation of manual craft”114 began to happen to a

large extent. It is in this time that the position of the designer as a (product) planner

gained its modern form: planning and execution were separated in many areas and

the designer took over the planning part, while execution was automated115. This

connects directly to the notion of planning versus executing a plan as developed in

Section 2.1 as a current understanding in design theory. A result of this division is

that many discussions regarding the value of products crafted by hand in opposition

115 ibid. p. 48-49
114 Mareis, Claudia. Theorien des Designs zur Einführung. p. 49

113 cf. Keogh, Brendan; Nicoll, Benjamin. The Unity Game Engine and the Circuits of Cultural
Software. p. 65

112 “Passionate Creators of Story-Driven Role-Playing Games”. CD Projekt RED. (2023). CD
PROJEKT RED - Award-winning creators of story-driven role-playing games. Online:
https://cdprojektred.com/en/ (accessed: 13.03.2023).

36

to those generated by machines came up116. Those discussions still continue to

enter discourses from time to time, as currently seen in the debate on AI-generated

imagery and text.

These debates are connected to highly political issues, like the value of human work

under the prospect of increasing automation or human working conditions in

technological environments. In this context, CD Projekt RED had and has to decide

how to negotiate between its economic interest, the care for its workers,

relationships with the players and other studios, publishers etc., and how to

determine job positions in relations to the only to some extent fluid givens of the

engine they develop with. The job positions at CD Projekt RED, being catered

towards specific tasks of the development process, can thus not only tell us

something about what is understood as a quest internally, but also about how the

company chose to enter into dialogue with its technology.

Quest Designers at CD Projekt RED are tasked with “designing quests and

implementing them using a proprietary toolset”117. Interestingly, design and

execution, being separated in many areas during the course of industrialisation to

increase efficiency, can be found here joined in a human worker’s job, handing not

all of the execution to the tool. This is a hint that the execution of quest designs is

not fully automatable (yet) or that automation is not desired. Indeed, one major

argument for human work in video games and many other fields is that “handcrafted

content” has an inherent value in which consumers can trust. TW3, for instance, was

often praised for its attention to detail in environment art, cinematic design and

writing, with some saying this was only possible only due to the “human touch”118 by

game developers. Whether this is the case or not is not the subject of this text, but it

renders the interesting point that CD Projekt RED might have intentionally placed

the boundary between human and machine work at the position that it is, to allow for

more granular design.

While quest designers “create the storyline on a detailed level”119, the writers / story

team is mostly concerned with the narrative’s “macro level”120 and writing dialogue

lines121. Cinematic, Level, Gameplay, Sound, Character, Lighting, VFX Artists and

Designers (to enumerate some of the relevant parties) create further important

121 CD Projekt RED. (2023). Pisarka/Pisarz | SmartRecruiters. Online:
https://jobs.smartrecruiters.com/CDPROJEKTRED/743999704525474-writer (accessed:
16.03.2023).

120 Tomaszkiewicz, Mateusz. The devil is in the details.
119 ibid.

118 Mello-Klein, Cody. (2017). The power of handcrafted visual design in video games –
storybench. Online:
https://www.storybench.org/the-power-of-handcrafted-visual-design-in-video-games/
(accessed: 16.03.2023).

117 CD Projekt RED. Quest Designer | SmartRecruiters.
116 ibid. p. 54

37

elements needed for a quest, and in the end it is the quest designer who is

responsible for “integrating delivered assets”122. The number of different assets to

integrate and the potential complexity inherent in branching storylines further

justifies the quest designer position and motivates quests once more as an

interesting subject for analysis.

Having established the economic and creative context from which REDengine 3

stems, I will now turn to the other side: the players, tinkerers and programmers who

“work” on the game in their own fashion and with the tools they created.

3.2.2 Modding Scenes

There is a simple reason for why modding is the point of entry to REDengine 3’s

object language. The most accurate result could be gained if I had access to the

engine and tool developer’s thoughts on the design of REDengine 3. But

interviewing studio members would require a whole other level of study where I had

to place a lot of my efforts elsewhere. Moreover, since the game’s original release

and development started more than seven years ago, finding developers with the

information I need might be hard too, since they may have left the company. So

given that I do not have access to the studio’s interpretation of the engine’s

language, I will use the options that are left to players, more specifically those, who

are concerned with the technicality of the game: modders.

Modding, according to Tanja Sihvonen in Players Unleashed!, is the following player

activity:

»Modding refers to various ways of extending and altering officially released

computer games, their graphics, sounds and characters, with custom- produced

content. Modding can also mean creating new game mechanics and new gameplay

levels (maps) to the point where the original game transforms into a completely new

title.«123

For TW3 modding, this statement can be confirmed. We will find that the two main

modes of modding declared by Sihvonen, extending and altering, can be mapped

directly to two major tool sets developed for interacting with TW3’s game files. The

target of these activities is the video game TW3, which moreover always serves as a

benchmark for what modders want to achieve. Creators of modding tools have put a

lot of effort into making various content types like shaders, foliage (graphics),

123 Sihvonen, Tanja. Players Unleashed! Modding The Sims and the Culture of Gaming. p. 12
122 CD Projekt RED. Quest Designer | SmartRecruiters.

38

speech (sound) or meshes and entities (characters) accessible, indicating a strive

towards an as extensive possibility space for modders as possible. The most

advanced of these tools allows users to create new levels, while the freely-editable

scripting codebase would indeed allow for new gameplay to some degree.

If we want to use this point of entry, a glimpse into the world of modding

communities seems sensible in order to understand what contextual associations

come with it. According to Sihvonen, a modding scene is the collection of modding

efforts manifest in the internet:

»A ‘modding scene’ refers to the collaborative internet networks that players use to

share the resources for modding (tools, programmes, tutorials, FAQs and general

help) and their creations (mods) with other enthusiasts.«124

While I concur that the resulting network of data found online on TW3 modding is

part of its modding scene, I will also regard the people, their interactions and

expressions as constitutive components of modding scenes.

The TW3 modding scene happens largely on two (Wolven Workshop and w3 radish

tools) among several other discord servers, the official TW3 modding forums125 by

CD Projekt RED and the game’s Nexus pages126. While discord servers and forums

are mainly used for the social part of modding as well as sharing progress and

asking questions, the tools and creations can be found on Nexus Mods or online

repositories and many tutorials or showcases on YouTube.

Black Tree Gaming Ltd. is a company whose main product is the Nexus Mods page.

The website’s main purpose is to provide users the ability to up- and download

mods, modding tools and other media for a variety of games. For TW3, ~ 5.800 mod

pages exist, and with over 120.0 million downloads the game ranks as the pages

game with the 8th most downloads in total127, which quite probably makes Nexus

Mods the biggest host of TW3 mods. The site also hosts a forum, which, quite

similar to the CD Projekt RED forums and some of the general channels in the

aforementioned discord servers, serve as a starting point for many modders to ask

127 https://www.nexusmods.com

126 Black Tree Gaming Ltd. (2023). The Witcher 3 Nexus - Mods and community. Online:
https://www.nexusmods.com/witcher3 (accessed: 16.03.2023).

125 CD Projekt RED. (2023). MODS (THE WITCHER 3) [Category]. CD Projekt RED Forums.
Online: https://forums.cdprojektred.com/index.php?forums/mods-the-witcher-3.69 (accessed:
16.03.2023).

124 ibid.

39

questions about modding workflows, post tutorials and put in requests for new and

old mods.

The official CD Projekt RED forums are not only a starting point for TW3 modders,

but also for those of The Witcher and TW2, which are both represented as a

category of posts next to TW3 modding. These forums are interesting for one

reason in particular: it is there that the official modding tools were first announced

and distributed by the studio, and it is also here where some studio members have

accounts and from time to time give answers to the community. For example, over

the course of the Next-Gen Update for TW3, studio member “Vinthir” released a

statement concerning the status of the official mod kit128, proving that CD Projekt

RED regards the forums as their official contact point to the modding community.

The Discord server landscape of TW3 modding is split along the communities two

major tool sets: WolvenKit, which is mostly discussed on the Wolven Workshop,

while the radish modding tools have a dedicated server “w3 radish tools”. Aside from

these two (which are probably the most active), a general server for CD Projekt RED

game modding exists (“CDPR Modding Community & The Boiz”), mostly occupied

with Cyberpunk 2077 nowadays, an official TW3 server from CD Projekt RED,

where mainly general fan and mod installation discussion happens, and “The

Witcher 3: Modding Community”, a very recent split from Wolven Workshop, meant

to be focused on tool creation.

Server Purpose

Wolven Workshop “The Witcher 3 Modmaking Platform”,
general-purpose TW3 modding and
development of the WolvenKit editor.

w3 radish tools Learning, developing and researching
for the TW3 radish modding tools.

CDPR Modding Community & The Boiz General-purpose modding of CD
Projekt RED games.

The Witcher General The Witcher-related topics.

The Witcher 3: Modding Community TW3 modding tool creation.

Table 3: Listing of discord servers where TW3 modding discussions happen.

128 Vinthir; CD Projekt RED. (2022). Mods and The Witcher 3 next-gen update [Thread]. CD
Projekt RED Forums. Online:
https://forums.cdprojektred.com/index.php?threads/mods-and-the-witcher-3-next-gen-update
.11110486/ (accessed: 16.03.2023).

40

3.2.3 Asymmetries in Modder-Studio Relations

In these communication platforms and in the modding tools, time and time again the

entanglement of TW3 modders with the company CD Projekt RED can be felt. The

key point in this relationship centres around the modders trying to tinker and create

as much as possible with REDengine 3 and TW3, and on the other hand the

company providing to some degree access to and information on their technology.

Sihvonen explains how the status of games like TW3 as items that are partially open

for modification indicates a power asymmetry:

»the realisation of these propositions depends on the developers’ inten tions,

incorporated in the game code, in comparison to the reconfigurative power allocated

to the player«129

Sihvonen names propositions and “ideological inclinations”130 as game aspects

whose modability is restricted by the power granted from developers, but we can

generalise and say that not only those, but any aspect coupled to a game’s technical

reality is dependent on “the reconfigurative power allocated to the player”131. And

since this allocation of power is dependent on “developer’s intentions”, it makes

sense to take a look at the motivations of TW3 modders and CD Projekt RED

regarding modding and compare.

There are a multitude of reasons why someone might be motivated to start modding

a game. The creator of the radish modding tools, rmemr, lists among else the

following motivations132: some want to enjoy the game more and thus decide to

tweak the game to make it such that it is better for them. On NexusMods, for

instance, a variety of so-called “Re-Shade Presets”133 exist, which are concerned

with high-level visual adjustments only. Closely related is the drive to fix discovered

bugs, including bugs which may be regarded as bugs only by some people (e.g. the

difficulty of an enemy). For some, enjoyment can be found in the ability to express

themselves with a given feature-rich tool set and coherent asset collection. For

example, the ability to add new sword meshes to TW3 and integrate them

133 Black Tree Gaming Ltd. (2023). The Witcher 3 mod categories at The Witcher 3 Nexus -
Mods and community. Online: https://www.nexusmods.com/witcher3/mods/categories
(accessed: 16.03.2023).

132 rmemr. (2015). [Post]. CD Projekt RED Forums. Online:
https://forums.cdprojektred.com/index.php?threads/im-just-curious-about-mods-newbie-alert.
62410/#post-2109367 (accessed: 16.03.2023).

131 ibid.
130 ibid.
129 Sihvonen, Tanja. Players Unleashed! Modding The Sims and the Culture of Gaming. p. 34

41

seamlessly in the in-game economy. Rmemr moreover notes that some simply find it

fun to be tinkering with and exploring a game’s technology, maybe even being

motivated by the inherent challenge to “decrypt things that were not meant to be

changed”, which might refer to their own work on figuring out some of the low-level

formats like W3STRINGS of REDengine 3. This subjective list overlaps to large

parts with a scientific survey conducted by Nathaniel Poor134:

Table 4: Modders’ motivations according to Pool (2013).

The parts rmemr missed out on in comparison to the survey are that modding can

be a pathway into the games industry, a motivation reassured by various news about

modders (e.g. the developers of WolvenKit) being hired by CD Projekt RED, and

that many modders have an inherent motivation to do their work also for the

community (although rmemr might have assumed this to be trivially true).

Compared to modders, the motivation for CD Projekt RED to tolerate and to some

degree encourage and support modding activities for their games is not entirely

mirrored. While game development studios might be motivated by the gains for

modders and the player community like those discussed above, they will also be

motivated by advantages for themselves, which leads in some points to agendas

incompatible to those of modders. In “Precarious Playbour: Modders and the Digital

134 Poor, Nathaniel. (2013). Computer game modders’ motivations and sense of community:
A mixed-methods approach. In: (2014). New Media & Society. vol. 16. no. 8. p. 1257

42

Games Industry”, Julian Kücklich analyses modder-studio relations and brings up

five benefits game developers could gain from a large modding community135.

As a sample point, Kücklich mentions how highly successful mods such as

Counter-Strike for Valve’s Half Life 2 can provide the developer with new brands or

innovation without the studios needing to invest effort into marketing or

development. While no mod for a CD Projekt RED game has reached this kind of

success, there are projects which have established minor brands and were

recognised by the company, like “Rise of the White Wolf”, “The Witcher: Farewell of

the White Wolf”, HalkHogan’s “The Witcher 3 HD Reworked Project”136 or the

WolvenKit tool set, whose Cyberpunk 2077 edition was made an officially

recommended modding tool137. In an unprecedented case for CD Projekt RED, they

even included a selection of mods, including HalkHogan’s, in the so-called

“Next-Gen Update'' or patch 4.0 for TW3. This is one angle, where the issue of

playbour could be raised against the studio, that is, “the commodification of

modders’ leisure“138 – if not for the fact that the creators of these integrated mods

were actually paid and credited by the company139. On the other hand one of the

more known TW3 modders named wghost81 criticises in an open letter to CD

Projekt RED that said update also includes changes which are similar to various

uncredited mods, claiming that some were directly included and rewritten for

confusion of observers140141. Without an aspiration to give a final answer to whether

or not this is true (as I am neither legal expert nor in knowledge of the relevant mod

and game source code) I suspect these claims not to be true. I agree with Aeltoth,

another known TW3 modder, that the evidence provided is not tenable and that they

should “at least use tools that are made to detect copy/ pasted code”142. Regardless

142 Aeltoth. (2023). “[..] with complaints like that, at least use tools that are made to detect
copy/pasted code. They're able to detect it even if functions and variables are renamed and
moved around. So unprofessional once again, like who compares code in an image with no
label (se we don't know which side is which) and with colored boxes smh. [..]” [Message].

141 wghost81. (2023). CDPR correspondence on community mods in TW3 NGE – Old Ghost
Stories. Online:
https://wghost81.wordpress.com/2023/01/19/cdpr-correspondence-on-community-mods-in-t
w3-nge/ (accessed: 16.03.2023).

140 wghost81. (2023). Time to wake up, samurai – Old Ghost Stories. Online:
https://wghost81.wordpress.com/2023/01/17/time-to-wake-up-samurai/ (accessed:
16.03.2023).

139 Vinthir; CD Projekt RED. Mods and The Witcher 3 next-gen update | Forums - CD
PROJEKT RED.

138 cf. Kücklich, Julian. Precarious Playbour: Modders and the Digital Games Industry.

137 CD Projekt RED. (n.d.). REDmod. Cyberpunk 2077. Online:
https://www.cyberpunk.net/en/modding-support (accessed: 16.03.2023). See section “What
is REDmod”.

136 CD Projekt RED. (2021). Highlights from the Path: Mods. Online:
https://www.thewitcher.com/en/news/38447/highlights-from-the-path-mods (accessed:
16.03.2023).

135 Kücklich, Julian. (2005). Precarious Playbour: Modders and the Digital Games Industry.
In: Neilson, Brett; Rossiter, Ned (eds.). (2005). The Fibreculture Journal. vol. 5.

43

of the solution, this incident demonstrates how the motivations and actions of

modders and studios can become entangled in both positive and negative ways.

A more widespread issue modders have with CD Projekt RED is the (in their

opinion) insufficient degree to which the company provides them with the means to

do modding. As we will see later, the TW3 modding scene had to base all their

efforts on a single command-line tool, lacking a thorough documentation, any

graphical user interface and the ability to decode some of the more interesting

formats. The potential for frustration is increased by several other factors.

For one, there are the inherent difficulties of game development/ modding, like the

need to direct a project such that the result is aesthetically coherent, or finding ways

to circumvent the lack of monetary budget (e.g. for voice acting). Secondly, the level

of frustration might be affected by the persisting legal grey zone in which modding

communities still operate. The enduring dissonance can be observed in legal

documentation. In their official Fan Content Guideline, CD Projekt RED states

clearly that they endorse the creation of mods:

»We’re happy for you to make mods for our games (i.e. software that modifies or

works with our games – e.g. changing the UI or adding new mechanics) so long as it

doesn’t breach the relevant game’s EULA [..].«143

However, in that document it is noted that the actual legally binding rules are, among

else, to be found in the User Agreement. In this agreement, the user is denied to

»modify, merge, distribute, translate, reverse engineer, or attempt to obtain or use

source code of, decompile or disassemble the CD PROJEKT RED games [..]«144

The dissonance between the de jure prohibition and de facto permission (with only

one case of the company taking down mods145) constitutes the grey zone, which

might lead to modders feeling that all of the company’s endorsements are dimmed

145 Kent, Emma. (2021). Cyberpunk 2077 Keanu sex mod removed following CD Projekt
warning. Eurogamer. Online:
https://www.eurogamer.net/cd-projekt-red-shuts-down-cyberpunk-2077-keanu-sex-mod
(accessed: 16.03.2023).

144 CD Projekt RED. (2022). User Agreement. Online:
https://regulations.cdprojektred.com/en/user_agreement (accessed: 16.03.2023). Section 8.,
Paragraph (d)

143 CD Projekt RED. (2020). Fan Content Guideline. Online:
https://www.cdprojektred.com/en/fan-content (accessed: 16.03.2023). Section 3, Paragraph
a.c

The Witcher. Discord. Online:
https://discord.com/channels/597170291021709327/597171985050501150/1071032950826
745887 (accessed: 16.03.2023).

44

by the conscious choice to not also give modders their legal support. All the while,

CD Projekt RED can be counted to have a relatively more modding-friendly EULA,

giving modders e.g. full ownership of the mods created with its tools146, in opposition

to e.g. Valve147.

Illustration 6: Screenshot of the level editor coming with the REDkit.

Illustration 7: Screenshot of the scene script editor coming with the REDkit.

147 Kücklich, Julian. Precarious Playbour: Modders and the Digital Games Industry.

146 Here, for instance, the EULA for the Cyberpunk 2077 modding tool: CD Projekt RED.
(2022). REDmod END USER LICENSE AGREEMENT. Online:
https://cdn-l-cyberpunk.cdprojektred.com/redmod_eula_en.pdf (accessed: 16.03.2023).

45

As a third and last point, some modders remember the tools CD Projekt RED had

given them for previous games. The REDkit148 for TW2 featured a full-scale

graphical user interface and specialised editors to create and modify levels, quests,

scenes, general entities and more, all of which is not trivially possible with the official

TW3 modding tools.

Some might sense a case of double standards here, with the company openly

declaring their support of modding and even highlighting modders’ works but not

providing them with the “proper” tools149.

Given that the official tools are only light enablers that do not “pre-empt the most

common workflows through which users [..] create, edit, and iterate upon content”150

(or rather: would like to), and given that one of modders’ motivations is to tinker with

and learn technology, it is no surprise that the TW3 modding community started

creating its own tools to expand their scope of possibilities. This can be regarded as

a process of self-empowerment, as a strive for more autonomy within the system

that was established at first. Eliminating the constraints caused by CD Projekt RED,

but also using them to create high-quality content, can moreover be viewed as a

move of self-affirmation and self-assertion in the face of a company that is regarded

by many to be flawed. The feeling of having the power to do something and

empower oneself or one’s community is consistent with Nathaniel Poor’s finding that

modders are, in general, proud of their work: over 80% of the modders they

interviewed agreed or strongly agreed to the statement “I am proud of the modding

work I have done” whereas less than 2% disagreed or strongly disagreed.

We now have an understanding of modding as a way to access REDengine 3’s

language and as a demonstration of grain at work and reason for its relaxation.

3.3 From Command-Line to Graph Editor

This section looks at technical consequences originating from the modding context,

prepares for the examination in Chapter 4 and takes a closer look at the specific

workflows and tools of TW3 modding.

150 Keogh, Brendan; Nicoll, Benjamin. The Unity Game Engine and the Circuits of Cultural
Software. p. 63

149 Twitter, Inc. (2023). mod (from:witchergame) - Twitter Search / Twitter. Online:
https://twitter.com/search?q=mod%20(from%3Awitchergame)&src=typed_query (accessed:
16.03.2023).

148 CD Projekt RED. (2011). REDkit (3.0.1).

46

3.3.1 Basics of The Witcher 3 Modding

The basis of any modding activity are the game files. TW3 has a lot of file types in

its installation and even more internal ones that are packed in compression bundles.

One type is interesting for modding and is human-readable from the start: the

game’s gameplay scripts. On top of C++ for low-level engine work, CD Projekt RED

developed a higher-level scripting language named REDscript, which uses features

and systems provided by the C++ - code and allows gameplay programmers to work

with the advantages of scripting languages, such as: runtime interpretation,

relatively simple syntax and semantics and automated memory management. The

code written in this language can be found in “[W3]\content\content0\scripts” and

accessed freely. I will come back to this topic in Section 4.3.

Illustration 8: Graphic demonstrating the import/ cook/ bundle process for the character mesh

of Geralt. For more information, see151.

Any more advanced TW3 modding starts with a command line tool that is named

wcc_lite.exe152. This application, released on 14. August 2015153, allows modders to

(un)bundle, (un)cook as well as im- and export a great variety of game files

(compare Illustration 8). Bundles are the REDengine 3 equivalents of ZIP files (or

153 Momot, Marcin; CD Projekt RED. (2018). Getting Started / FAQ (UPDATED 21.11.2018).
[Thread]. CD Projekt RED Forums. Online:
https://forums.cdprojektred.com/index.php?threads/getting-started-faq-updated-21-11-2018.5
6132/ (accessed: 16.03.2023).

152 CD Projekt RED. (2015). Witcher 3 Mod Tools (3.0).
151 https://wiki.redmodding.org/legacy-wolvenkit/guides/github-guides/project-structure

47

anything similar): containers for compressing multiple files and directories to smaller

size154. Bundles are also the files which end up in DLC- and mod packages that are

placed in the game’s dlc and mods directories. Cooking refers to the process of

compressing single files (e.g. textures with raw pixel data) to a smaller size. Im- and

export refer to transforming data from external formats such as FBX for 3D models

to their internal (uncooked) counterpart such as W2MESH and back.

In addition to scripts, wcc_lite allowed the modding community to unlock editing lots

of XML and CSV files (containing mostly gameplay data), Textures and Meshes.

However, the TW3 modding scene still had an initial major problem which was very

much related to this process: while all files could be (un)bundled and (un)cooked,

many of them could not be im-/ exported and thus not edited with any external

program. Even worse, most contents of the game’s main format, CR2W (Witcher 2

Resource Class) were part of this subset. CR2W’s for instance encode quests,

characters, journal entries, interactive entities, NPC behaviours, (cut-)scenes and

many more. It makes sense that there is no import/ export for them, since there exist

no standardised formats for entities like quests anyway, but this made life a lot more

difficult for those wanting to tinker with these files. Compared to the extensive

graphical editors for quests, communities, entities etc. in The Witcher’s D'jinni

Adventure Editor or TW2’s REDkit, many modders were disappointed that the TW3

Modding Tools only entailed a command line tool.

3.3.2 Community-Made Tools

As mentioned, consequently some began working on their own tools. These range

from a simple graphical user interface for wcc_lite (Mod Kitchen155) to a first encoder

for strings (w3strings encoder156) to the first attempts at a multi-tool for reading and

editing CR2W’s (Sarcen’s Mod Editor157). Both strings encoder and Mod Editor were

not able to rely on the im- and export functions and thus needed new code that

would transform data that could be handled by human users (e.g. in a

human-readable format like CSV or in a graphical front-end) to the custom

uncooked formats of REDengine 3. Since initially no one knew how those formats

157 https://forums.cdprojektred.com/index.php?threads/mod-editor.58758/

156

https://forums.cdprojektred.com/index.php?threads/utility-strings-encoder-for-adding-new-stri
ngs-new-ids-and-keys-as-standalone-w3strings-file.62959/

155 https://www.nexusmods.com/witcher3/mods/389/

154 Bundles can be found in [W3]\content\content0\bundles, if [W3] is the TW3
installation directory.

48

were structured, modders needed to reverse engineer encoding/ decoding protocols

from scratch.

As an example, audio data for dialogue lines was saved in an unknown format

called W3SPEECH and wcc_lite did not provide any import function, meaning that in

the end adding new dialogue was limited to text only. It was only when it was figured

out that W3SPEECH files had the following structure, that someone could write a

program (an encoder) to transform WEM audio to uncooked REDengine 3 data:

Illustration 9: Graphic demonstrating how WEM audio data is encoded in the W3SPEECH

format158.

Figuring that out solves just one part of the problem, though. In order for users to

utilise the added power that is given by such an encoder (in this case: adding new

speech audio to the game), some kind of user interface for inputting the data is still

required.

And this is where the two major tool sets developed by the community come into

play: besides adding encoders/ decoders for all major formats where none exists in

wcc_lite, they add a more or less human-readable representation of that data. The

first tool, WolvenKit159, is built upon Sarcen’s Mod Editor and provides functionality to

read, display and edit uncooked files from the engine. The second and much later

159 WolvenKit contributors. (2023). WolvenKit/WolvenKit-7: WolvenKit for Witcher 3 (7.2.0).
https://github.com/WolvenKit/WolvenKit-7.

158 REDengine 3 research contributors. (2022). W3Speech file. Generic - REDengine3
research. Online:
https://wiki.redmodding.org/redengine3-research/formats/generic#w3speech-file (accessed:
16.03.2023).

49

released tool set is named radish modding tools and allows users to create new

uncooked files with a range of textual and some graphical input representations.

Both toolsets entail various scripts to automate their respective workflow, that is:

WolvenKit: decoding -> editing (UI) -> encoding -> cooking -> bundling

radish tools: editing (UI, YAML) -> encoding -> cooking -> bundling

The basis of both tools is that the majority of game files have been unbundled and

uncooked.

I will now provide a short introduction to the interface of these created tools.

WolvenKit can be characterised as an asset editor. After creating a project, users

are able to open up the Asset Browser or the general CR2W file-picker to select an

uncooked asset they want to edit (Illustration 10).

Illustration 10: Screenshot showing WolvenKit and its asset browser, which allows searching

through all the game files that have been unbundled and uncooked to a certain location.

50

Illustration 11: Screenshot showing the project hierarchy as well as the decoded chunks and

properties of a CR2W file (in this case the top-level main quest structure) in WolvenKit.

Selecting an asset for modification/ inspection then adds the asset to the project

hierarchy, where it can be opened – it is in this step that the asset is decoded to a

hierarchy of chunks. Each chunk has various properties (see Illustration 11).

WolvenKit, by means of this generic CR2W window, thus allows users to inspect and

modify any quest, behaviour, scene or world content arrangement. However, doing

so can become quite complex – especially for content that allows for heavily

interconnected chunks, such as quests, where a block of functionality can have any

number of successors and predecessors. The biggest drawback of WolvenKit, then,

is that there are no specialised windows for working e.g. with the connections within

a quest graph, the arrangement of elements on a scene timeline or placing entities

in the game world.

In this regard the radish modding tools can shine. While they do not enable users to

conveniently view/ edit existing assets, they do facilitate some much user-friendlier

workflows for content creation. Instead of an editor integrating all other sub-editors

and commands, the radish modding tools’ main access point is a set of batch scripts

and YAML files contained in a standard project template, referencing the encoder

executables lying in their installation directory (see Illustration 12). Unlike WolvenKit,

in order to inspect build chain output (which delivers valuable information in case of

errors) it is sensible to use a command line for starting the batch scripts which

highlight errors and warnings there. Akin to WolvenKit, the radish modding tools

allow for the import of various assets which wcc_lite supports by default.

51

Illustration 12 (left): Screenshot showing the project template of the radish modding tools and

elaborating on how various kinds of data and commands have their designated places.

Illustration 13 (right): Screenshot showing a sample YAML quest definition.

The definition.* directories are reserved for the YAML representations of

CR2W-based assets, such as scenes or environments. YAML is a file format

standard for human- and machine-readable data. These files are the input for the

encoders which translate them to CR2W-assets.

There are two graphical editors in the tool set: a quest editor, allowing to change the

YAML quest definition more easily (compare Illustration 13 and 14), and a phoneme

editor to map dialog strings and speech to phonemes from which lip sync animations

are generated (Illustration 15). These two editors are one of the major advantages to

the radish modding tools.

52

Illustration 14: Screenshot showing the quest editor of the radish modding tools with a

loaded YAML quest definition (the one displayed in Illustration 13).

Illustration 15: Screenshot showing the phoneme extractor of the radish modding tools, into

which dialog speech strings and audio files and mapped to phonemes for lip sync

generation.

53

Another is the fact that the tool’s encoders are able to link between some assets

automatically. For instance, the quest editor automatically detects all community

definitions and provides e.g. the option to spawn them without the user needing to

type a path to the asset. Thirdly, the tools feature an extensive in-game UI to define,

preview, debug, and output various kinds of data, including scene data (animations,

cameras, ..) as well as placement of entities in the world, foliage and more

(Illustration 16).

Illustration 16: Screenshot showing the in-game UI of the radish modding tools for placing

entities in the game world.

54

Chapter 4. REDengine 3’s Quest Design

Language
Having established a theoretical framing and exposed cultural conditions, the next

and last major matter in this thesis is consecutive: the actual exposition of technical

givens in REDengine 3 quest modding and their implications for usage.

The form of this analysis centres on the quest graph as a manifested pattern for

quest design. Starting from there, I will explore the language of the various aspects

that are element to or adjacent to REDengine 3 quests. When discussing each

(sub-)aspect, I will follow the differentiation between constraints and grain in Section

2.2. Firstly, I will demonstrate how the aspect is technically determined. Secondly, I

will explain how this constraint shapes the user's workflow and their understanding

of what is feasible and what is not, thereby defining the design language of the

engine.

4.1 Graph-like Progression

The main structures for quest designers to work with in REDengine 3 are what I call

quest graphs. A quest graph is understood here as a technical asset in video game

engines which allows developers to execute the design of template quests’

high-level collection and connection of events. As a consequence, the quest graph

is also the place where the integration of the majority of quest-related assets is

happening.

4.1.1 Graph Editing

The radish modding tools contain a quest editor (cf. Illustration 14), which allows to

create new quest blocks, configure them and set connections. A running quest

graph receives a signal through its start block(s) and this signal will progress

through the other blocks and connections whenever possible. I differentiate two

major block types, besides some minor exceptions: event blocks, which cause some

happening (e.g. a character walking to a location), and condition blocks, which halt

the signal until some condition (e.g. time of day is evening) has been fulfilled. Any

block can have multiple inputs and/ or outputs, to accommodate e.g. for different

outcomes in a scene block. The blocks and connections form a mathematical graph:

a set of arbitrary nodes combined with a set of edges (node pairs); in the quest

graph, the nodes are the blocks and the edges are the connections.

55

The visual graph editor is a major advantage for quest creation, since it

communicates the state of the graph’s set of edges much clearer than other means.

The alternatives are the YAML representation of the graph in the radish tools (to

which the editor saves), and editing in WolvenKit, which both have the problem that

due to them presenting the graph as an one-dimensional list of blocks, one cannot

intuitively see which block connects with which (see Illustration 17).

Illustration 17: Screenshots comparing quest graph edge editing with the means of the radish

tools’ quest editor (top left), its underlying YAML representation (top right) and access to

encoded CR2W quest assets in WolvenKit (bottom).

On the other hand the radish quest editor has a major drawback, which is based on

the fact that it is so much more user-friendly. This draws modders away from some

additional quest graph modding options possible only outside the tool: REDengine 3

defines 82 CQuestGraphBlocks160 and blocks buildable from

IQuestConditions, whereas the editor implements only 41 of them, missing

blocks like the CQuestCutControlBlock, which was deemed to be “very

important” by a modder and quest designer at CD Projekt RED161. This block allows

161 erx. (2018). “there is a good variety of different blocks to choose from, however two VERY
important blocks that are missing in my opinion are CQuestHiResRealtimeDelayCondition
and CQuestCutControlBlock (and of course scripted actions would be super cool to have in
the future)” [Message]. w3 radish tools. Discord. Online:

160 These are defined in REDengine 3’s RTTI (run-time-type-information) index.

56

users to eliminate a pending signal in another branch of the quest graph and was

likely not implemented due to the need for a special UI feature. While cutting control

can be managed with a workaround utilising the fact system, the

CQuestEntityMotionBlock can not be simulated by other blocks and was

omitted in the editor’s preprogrammed blocks for unknown reasons. There are also

some blocks, like CQuestEncounter*, which would require a significant amount of

additional effort to implement in the radish tool set: modders have not come to figure

out how encounters work in REDengine 3 and thus the creation of new encounters

and their control with quest graphs is not possible as well.

4.1.2 Interactive Fiction with Questgraph

The bare quest graph itself is not exposed to the player in its entirety. Instead, as in

many video games, a questgraph has some associated elements to communicate to

the player where they are within the quest progression. Quests in TW3 are

organised into stages, markers of important points to be reached in the graph. A

stage could be that the player has cleared a dungeon and found its secret, which is

then communicated to the player with a specific sound, a HUD pop-up and a new

text appearing in the quest journal (see Illustrations 18 & 19).

Illustration 18: Screenshots of a quest entry progression in the quest journal of TW3. The

second image shows how various new objectives and a new description appeared, and that

some objectives were marked as completed (green checkmark).

https://discord.com/channels/416336392692695040/416343412191789087/4482275212685
47585 (accessed: 17.03.2023).

57

Illustration 19: Screenshots showing how the questgraph state is communicated via the

in-game HUD. The left screenshot shows the current quest’s objectives and the focused

objective, the right shows a pop-up when a description or objective has been updated.

The series of quest descriptions appearing for a specific actualised quest reveals

the strong connection between TW3 quests and interactive fiction: a TW3

questgraph could be reduced to a series of scenes with choices only and quest

description updates as consequences – the basis of any ergodic literature, that is,

text whose reading requires non-trivial effort162. The generalised form of description

updates are event blocks that trigger an update for the user. Choices on the other

hand can be represented in two ways: the first way is to use blocks with multiple

outcomes, like a branch on whether a given predicate is true or false. The second

possibility is to connect a block's output to at least two condition blocks which wait

for a player action.

Illustration 20: Screenshot of the two ways to represent player choice: either the branch is

embedded in the code that is called upon the signal reaching the condition block (top), or it is

implicitly coded by two condition blocks representing the happening of either branch

(bottom).

162 Aarseth, Espen. Cybertext—Perspectives on Ergodic Literature. pp. 1–2.

58

Interactive fiction often not only encompasses the delivery of text, but also e.g.

changing background images – this principle is abstracted and scaled up by the

general event and condition blocks of REDengine 3 and its effects/ queries to the

game (sub)states. Nonetheless it can be said that the emphasis on narrative text

within the game provides developers with a cultural nudge towards seeking

inspiration from written stories. This effect is naturally amplified when the team

includes a dedicated writer, such as the ones at CD Projekt RED.

4.1.3 Narrative Glossary Categories

The subtle flair of written fiction is supported by the game’s extensive glossary,

containing entries with additional information on, for instance, characters and

beasts. This design choice not only encourages the provision of backstories to

these, but also underlines the recurring theme of text as a storytelling/ worldbuilding

device in TW3, catering to players who seek to immerse themselves further.

Moreover, the separation makes for an interesting example of narrative told through

UI: The separation suggests two mutually exclusive categories, implying that

humans and beasts do not overlap and forming a grain which nudges designers to

produce this distinction in their work.

Illustration 21: Screenshots of glossary entries regarding Detlaff in the character glossary

and bestiary, respectively. The bestiary screenshot furthermore exemplifies how the engine

codifies some animals as beasts.

59

Consumers of marketing material surrounding TW3’s release might be confused at

this point: one of the core selling points of the game was its questioning of whether

beasts are the only monsters in the world and whether humans, indeed, might be

monsters as well163.

The dissonance resolves when inspecting the actual usage of the journal’s

categories: these, contrary to their appearance, can each gain an entry concerning

the same character/ beast, such as one of the main characters from Blood and

Wine, Detlaff. Illustration 21 demonstrates how they are sorted in both “characters”

and “bestiary”.

Nonetheless: Detlaff’s double categorisation is a rarity (to the author’s knowledge

the only case in the game), which shows that even the developers at CD Projekt

RED, who had the explicit goal to blur beast-human boundaries, did not take up this

chance more often and use the subversive potential of this grain.

Another aspect that comes to light when inspecting the journal categories is that

there is a range of animals, which are sorted in as “beasts”. And while for a lot of

monsters the distinction to characters and even humans is blurred in the game’s

narratives (as in the Detlaff example), the same work was not done for wolves,

bears, panthers and others. I will return to this theme of ambiguity towards animals

when discussing how animals are placed in the game world in Section 4.2.

4.1.4 Objectives incentivising Heavy Guidance

Next to quest stage descriptions, further ways to telegraph a quest’s state to the

player include short, written objectives (Illustration 18) whose state (activated/

deactivated/ failed/ succeeded) can be controlled with a dedicated block, as well as

a quest outcome (completed/ failed, compare Illustration 22). The existence and

regular use of the quest journal and HUD in the base game strongly incentivises

designers and modders to use these features. While objective lists and descriptions

can be left empty, this will result in empty panels in the journal and HUD view,

breaking with the expectations of players that the dedicated spaces should be filled

with instructions and commentary. Consequently, designers will be drawn to filling

those structural spaces and create heavily structured task lists for the player,

providing short objectives for every situation and thus giving them heavy guidance

as to what their next goal should be.

The quest graph editor then resembles a kind of control panel, where an operator

provides a test subject with instructions and triggers events based on their

circumstances in the test chamber (the world). In the videogame Portal, this rhetoric

163 cf. CD Projekt RED. (2013). The Witcher 3: Wild Hunt - Killing Monsters Cinematic Trailer.
Online: https://youtu.be/c0i88t0Kacs (accessed: 17.03.2023).

60

of the player being a subject of someone’s productivity management is addressed

explicitly. The avatar Chell, a test subject, is led through various test chambers by

the artificial intelligence supervisor GLaDOS, who instructs them to do various tasks,

like carrying cubes, reaching a place or pressing a button in dedicated environments

set up for Chell’s traversal. The main twist of the game is based on Chell’s decision

to exit the loop of recurring tests and externally imposed tasks by finding a way out.

Illustration 22: Screenshot of quest categorisation in TW3 quest journal.

REDengine 3, in its basic features, does not incentivise such a meta-commentary on

player choice and developer control. Instead, the existence of the journal in its given

form as well as some other features like automated rewards (see farther below),

which are completely absent in Portal, indicate that CD Projekt RED embraced

quests as a game element with a heavy focus on productivity. This is a recurring

feature in big open world role-playing games, with many games in popular series

such as The Elder Scrolls, Grand Theft Auto or Assassin’s Creed featuring a HUD

display of objectives and extensive quest/ mission journals. While some titles, such

as The Legend of Zelda: Breath of the Wild or Elden Ring show that open world

RPGs can work without such heavy guidance, CD Projekt RED seems to have

decided to stick with it: not only do all titles in the Witcher series of video games

have these features, but also their newest game Cyberpunk 2077.

4.1.5 Quest Rewards and the Path of Least Resistance

An important component of many quests in both literature and video games are

quest rewards. In a most general understanding, quest rewards are any positive

event for the player generated by the quest system for achieving a certain progress.

Classical quest rewards are (cut-)scenes, special items, improvement of a stat,

61

level-ups, savepoints or new views or sections of a level. REDengine 3 has a

dedicated reward system implemented for the combined delivery of reward

packages, which are defined in a special XML format:

Illustration 23: Screenshot of two modded TW3 reward definitions in XML.

In Illustration 23 we can see two rewards, each delimited by <reward></reward>

tags. Such a reward contains the following parameters: a name for identification in

other parts of the game, the level for which the reward is defined (used for scaling

based on the player’s actual level), experience gain, gold gain and lastly a comment

field for developers. A reward can provide multiple items, and each <item/> has a

name field to reference the externally defined item and a specification of the

amount.

Within the radish modding tools, not only reading and editing the XML format can

pose a challenge, but also the integration of reward packages into quests and

scenes – the game’s most important high-level event-systems.

Rewards in REDengine 3 seem to be very rigidly defined at first glance, but

investigating what an item definition can be shows that item rewards are actually

highly customisable: an item is a CR2W entity, which, due to the chunk-/

component-based approach of CR2W allows creators to add a huge variety of

features to the item: sound effects, visual effects and even further meshes. Item

entities can also be derived from other definitions in the TW3 data files. In general, a

lot of constellations are possible, for example the merging of two completely different

character models, since limbs are separate sub-entities and can be built together in

arbitrary combinations – but one caveat remains: there is no documentation on how

all the CR2W chunks which are definable and addable are intended to relate to each

other. This, effectively, makes entity creation a complex field of researching, testing

and iterating for modders.

Similarly, the definition of rewards itself is largely undocumented for WolvenKit and

the more content-creation-focused radish modding tools alike and riddled with

challenges to overcome. To illustrate the point, I will describe the process of reward

creation in the radish toolset here:

62

Illustration 24: Screenshots showing how rewards are integrated in a quest using the radish

modding tools. Top: reward block in the quest editor. Bottom: stub reward in YAML.

The quest editor provides a reward block, wherein one can select a radish reward

definition – which is different from the REDengine 3 XML definition noted above and

written in YAML. The YAML reward is then transformed by the encoders to its XML

counterpart. However: the radish reward definitions do not allow to set the

experience and gold parameters. That is why users of the tools are falling back to

defining the XMLs themselves. But leads to another problem: the quest editor will

not find the rewards since it scans for YAML-defined rewards only. Consequently,

the solution pattern is to create a YAML reward, assign it in the quest editor and

replace the encoder-generated XML with the custom one, where the experience and

gold-values are set.

Undocumented fallacies like these or the fact that the XMLs need to be based on

UTF-16 instead of the much more common UTF-8 encoding are major reasons why

many modders do not continue in this learning path, or why it takes them a long time

to finish a project. It is such problems which proof the value of (great) tools: while

the radish modding tools enable a lot of opportunities, they do not enable as many

efficient patterns for people to use them.

4.2 Layers on the Game World

In this section I will take a closer look at how the quest graph can be connected to

the 3D game world with modding tools.

4.2.1 Guiding with Mini-Map Pins

As a first entry point, the matter of quest-induced navigation with the (mini) map will

be investigated. Maps are a tool to assist in navigation through a topography, which,

63

in the case of the open-world video game TW3, is a 3D rendered world filling the

entire screen. The entity traversing this world is the avatar Geralt, steered by the

player.

Since the game world is open, providing multiple paths to reach a given target,

several issues may arise for the player as noted by video game essayist Razbuten.

These issues include getting lost, missing an event or a location, or being detected

by an enemy, all of which motivate the use of a map164. TW3 provides a map in the

menus and a mini map in the HUD165:

Illustration 25: Screenshots of TW3’s map (top) and mini map (bottom).

165 HUD = heads up display: UI that is rendered on top of the game world.

164 Razbuten. (2022). The Problem With Mini-Maps. Online: https://youtu.be/nmzYRT7LBQs
(accessed: 17.03.2023).

64

For the issue of getting lost, TW3’s maps automatically display the player’s location

(Illustration 25 the cursor-like shapes). Moreover, quest locations are automatically

displayed and highlighted (Illustration 25: yellow markers), with the world map also

allowing players to set their own custom waypoints (Illustration 25: blue and green

markers). For custom markers and the quest locations the direction is shown on the

compass, with active quest objective locations even showing a way to the goal.

Regarding the issue of missing events, collectable herbs or roaming enemies, we

can see that for example the world map displays question marks to lead players to

points of interest, while the mini map prominently shows yellow question marks to

depict a new quest.

In their video “The Problem With Mini-Maps”, Razbuten argues that mini maps are

“too useful”166. While they do increase the player’s efficiency, they do it so much that

some players begin to rely on the mini map as their sole means for traversal and

shifting attention oftentimes away from the activity of moving through the game

world itself. According to Razbuten, this is especially tragic in the case of open-world

games like TW3, since

»the quality of an open-world title isn’t determined by how quickly the player can get

through it. In fact, most would say that a good open-world game is one you can get

lost in.«167

REDengine 3’s cultural grain is such that many designers will be directed towards

providing a good setup for player overreliance on the mini map. Modders or

designers working with the engine most likely have in mind how TW3 uses the

aforementioned features and moreover most probably strive to achieve the same

aesthetic patterns in their work, if they use REDengine 3 as a tool. Were it different,

then much easier to operate and less specific tools could be used – for example the

Story Creator168 for Assassin’s Creed Odyssey or any RPGMaker quest system

plugin. Consequently, if a modder has committed to using TW3, then it would be

possible for them to construct quests as in Elden Ring – without quest journal

entries, objectives and quest markers – but the motivation to do so is unlikely to be

there in the first place if they intend to stay faithful to the game. All the while, actually

omitting a map pin is similarly easy as it is to leave a quest description blank. One

simply needs to not add the “map-pin” element (lines 32-33 in Illustration 26) under

the respective objective definition:

168 https://assassinscreed.ubisoft.com/story-creator-mode/en-us/
167 ibid.
166 ibid.

65

Illustration 26: Screenshots of a map-pin definition for an objective in the radish modding

tools.

Now, as discussed in Section 3.2, there are a lot of modders interested in improving

or tinkering with games per se. Would they not be interested in removing such

features that are regarded by some as a flaw? First of all, there are in fact several

mods modifying the maps’ functionality, e.g. disabling the display of the player’s

location169 or of objectives on the main map170. The problem is that disabling all

automated location guidance causes a major soft lock for players, since the writing

and quest design in TW3 frequently lacks sufficient clues in character dialogue or

journal descriptions to deduce the next location to go to for a quest. That is why

there is a strong convention in TW3 that every quest has location markers for each

of its objectives, and this convention transfers to those who intend to create new

quests that are integrated in the existing world. The case might be different in a new

world hub, where the introduction of new conventions would be more feasible, but

the publishing of such a mod is not foreseeable for the near future.

4.2.2 Beast Ambiguities in TW3 Communities

To grasp the most immediate connection between quest graphs and the game

world, we need to look at three types of engine content respectively called entities,

layers and communities. Entities encompass most game data that can be placed

into the game world, most notably static meshes (architecture, props, ..), areas (e.g.

for use in a quest wait block, or to locally change a world aspect) or characters.

Layers are collections of entity placements in the game world. For instance, one

layer could contain all entity placements forming a small village, while another layer

contains all areas triggering quest progression in that village, and yet another layer

containing all the waypoints for NPCs. Community definitions contain one or more

phases with each defining how a given set of NPCs behaves by default when they

are not specifically scripted to do something else.

Both layers and communities can be (de-)activated via the questgraph, and

communities can be triggered to change to a different phase. Thus the game world

170 https://www.nexusmods.com/witcher3/mods/2796
169 https://www.nexusmods.com/witcher3/mods/1045

66

of TW3 becomes layered with set pieces. This is in principle quite similar to theatre,

where the base stage is decorated with props, background canvases or painted

plates that can be slid onto the stage from left and right. The set designer for

theatrical plays then corresponds to the environment artist in video games, and the

stage manager to the executive side of the quest designer’s job.

In Illustration 27.1, the house, bonfire and pirates are entities collected in the layer

named “humanlayer”. A community definition, which is not part of the layer but

rather references it, defines that the pirate entities are assigned to various activities

(e.g. work_woman/stand_mw_upset__jt) defined in the layer – called

actionpoints.

This technical structure suggests and at times almost enforces patterns which range

from interesting, over simply useful to questionable. An interesting pattern is that by

the logic of the game files, humans, animals and monsters alike form communities.

The ambiguous categorisation of entities is further reflected when inspecting the file

paths of each kind. It shows that all three are subsumed under the “characters”

directory, while in the subdirectory models a distinction between humans, animals

and monsters is made.

But this distinction is once again disturbed by the fact that the \animals directory

also contains animals which are typically hostile in TW3 and sorted in in the

“bestiary”, like berserker bears or wolves. Using entities in a community, one can set

the entity's attitude to the player, that is, whether they will attack them or how

quickly. It shows that all monsters and typically hostile animals can be set to be

friendly to the player, which might be the final sign that the game files and the

engine, while in general ambiguous, in the end literally and metaphorically support

blurring the line between monsters, animals and humans.

67

Illustration 27: Screenshots of layer and community definitions using the radish modding

tools.

Top (27.1) visualises a layer using the in-game quest UI.

Middle (27.2) shows a layer that is defined in YAML.

Bottom (27.3) shows how one NPC’s behaviour is defined via a YAML community definition.

68

4.2.3 Encounters and The Time Issue of Modding

A useful aspect of this layer-entity-community system is that it enforces the definition

of a community in order for an actionpoint to work. And by enforcing a community

definition, designers are naturally guided to the many NPC behaviour features that

REDengine 3 provides, such as different action points per day time, reacting to rain,

initialisers, roaming in areas or large-scale assignment of entities to classes of

action points (which was heavily utilised e.g. in the in-game city of Novigrad). In the

radish modish tools, these are all features which are quite accessible, given the

human-readable format of community YAML-definitions: in Illustration 27.2/ 3 it can

be seen how defining the pirate’s behaviour is a matter of 19 lines of simple attribute

setting and list creation. Even though the radish NPC behaviour definitions support a

lot of features and have relatively good usability, they do not support every engine

feature and most probably are not as user-friendly. This matter proves to be an

excellent example to make a point about the time and scale aspect of designing/

executing with tools, tool creation and the production gap between industry and

modding scenes.

CD Projekt RED likely began developing the REDengine, which was used for all

subsequent games, after the release of The Witcher in 2008. The TW2 version of

the engine was subsequently released in 2013. Therein we can already find a

smaller version of the community definitions I described above, editable by the user

with a small UI tool, as depicted in Illustration 28. The illustration shows the big

advantage of UI tools over text tools: all possible properties that a community can

have are predefined editable fields, with some, like the “initializer”, even having

dedicated submenus to search and select from all initializers scripted so far. The

radish modding tools definitions support the same initializer feature, but it took

creator rmemr 8 years, starting from the TW3 release, to implement the full capacity

of that feature171, and the usability is significantly lower: the option to add these

initializers is “hidden” in the sense that there is no visible “Initializers”-field in a new,

empty YAML file, and there are no in-place lists of available initializers with

automatic generation of initializer parameters – everything needs to be manually

researched in the Witcher Script code base and transferred to the YAML file. This is

a process taking much more time, and even though quite useful, it is unlikely it will

actually be used often, given that after 8 years, the TW3 modding scene has shrunk

significantly.

171 A basic version was already available with the tool release in 2019/2020.

69

Illustration 28: Screenshots of the TW2 REDkit community (initialisation) editor and an

analog definition in the radish modding tools.

Playing a modded quest like “A Night to Remember”172 takes about 1-3 hours.

Creating such a quest takes a year or more. Building the tools to create those

quests took 4 years and is still ongoing – with some problems not being solved even

after all this time.

Communities are not the only way to steer NPC behaviour in REDengine 3. They

are only a variant of the more powerful encounters, a class which enables flying

monsters and generic spawn behaviours. The encounter feature has been

discussed and investigated several times on the w3 radish tools server but no one

found out how to arrange chunks in a CR2W such that a working encounter is

produced. This was not only complicated by the complexity of the subject, but also

by the long-standing inability to copy-paste CR2W chunks in WolvenKit, which

prevented researching modders to replicate encounters from existing ones.

The issue of encounters is solved out of the box in the TW2 REDkit, providing, as

with communities, a handy UI. Given the fact that there is a ready-to-use solution for

172 https://www.nexusmods.com/witcher3/mods/4670

70

so many problems at hand, I believe that there is more to the motivation of some

modders than what Nathaniel Pool found in their analysis (see Section 3.1). The

work by some of the reverse engineers, researchers, tool creators and deep-diving

quest modders can also be interpreted as an expression of demarcation, resistance

and striving towards a feeling of superiority against CD Projekt RED. The basis for

this would be a community that – as discussed in Section 3.2 – also materialised in

the TW3 modding scene. The fuel for contra-stances can be found in the frustration

about the power asymmetry, the time modders spent and spend due to it, the

playbour issue173 and the many engine flaws uncovered by modders. A

we-versus-the-company stance can not only be observed in the letters by wghost81,

but also details like the blatantly non-corporate-styled discord server cultures e.g. on

“CDPR Modding Community & The Boiz”, which makes it reasonable to add

“proving the modding scene to stand en par with the company” as a possible

motivation for modders.

4.3 Scenes and the Power of Domain Languages

In this section I provide a perspective on how domain-specific languages and the

CR2W format contribute to REDengine 3’s overall language and success.

4.3.1 Abstraction Hierarchies with Specialised Ends

The architecture of many game engines, together with the editing interfaces made

for them, have a structural quality which is essential for them being a tool for solving

not only one, but multiple classes of problems. I call this quality an abstraction

hierarchy with specialised ends. In the most general sense, an abstraction hierarchy

is composed of sets of structures and patterns, with some sets symbolising and

encapsulating other sets. As an example, the Unreal Engine Niagara Editor174

abstracts VFX building in the engine: upon opening a VFX asset with it, the editor

(cf. Illustration 29) provides a structure consisting of (among else) a space

representing the assets VFX components, a preview-window representing the

components in a visual manner and a details-panel exposing various smaller

settings of a given selected element. Patterns can be found in recurring principles

like VFX features being plug-in-able or data values being composable to complexer

calculations (see Illustration 30) in place. The Niagara Editor is just one of many

specialised front-end editors, upon which no other editor or system is built, which

174 Epic Games, Inc. (2023). Unreal Engine 5 (5.1).

173 As discussed in Section 3.2 and in Kücklich, Julian. Precarious Playbour: Modders and
the Digital Games Industry.

71

shows it to be a specialised end of Unreal’s abstraction hierarchy. The file format of

Niagara VFX assets on the other hand, while being an abstraction on the engine’s

internal VFX composer, is no specialised end, since the abstraction does not end

here, as evident with the Niagara Editor.

Illustration 29: Screenshot of a Niagara VFX asset opened in the Unreal Engine Niagara tool.

In the middle the VFX components can be edited, in the top left a rendering is located, and to

the right details of the currently selected component are editable.

Illustration 30: Screenshot of a pattern

engrained in the NIagara Editor: parameters

of a given VFX element can be complexified

by various transformations. In this case the

gravity parameter has been transformed to

periodically swing to zero.

Many users who might not understand the technical details of VFX creation are able

to reach out to that realm by means of this sub-language as presented by the

Niagara Editor.

The interesting lens arising from this is the following: since the tool engineers from a

company or modding scene have limited time only, not all engine features can get a

specialised end point at the highest abstraction level a toolset provides. Thus, in

72

analysing what features were exposed at what abstraction level of an engine tool

sets language, we can gain information on what kind of domain-specific languages

the developers wanted the users to speak.

In Section 3.3 and over the course of Chapter 4 I already touched upon the various

major levels of abstraction present in REDengine 3 and the radish modding tools.

These are the CR2W file formats, XML, REDscript, YAML file formats and the two

visual editors, one for quest graphs, one for phonemes (cf. Illustrations 14/ 15).

Sorting in problem classes like AI, scene and lastly overall quest design in this

hierarchy will give us a good closing overview of what the grain is leading to.

4.3.2 REDscript as Mediating Language

Starting from the quest editor, the two abstraction levels referenced by it are YAML

format files and REDscript – and I will now take a closer look at REDscript as a

programming domain language for high-level game scripting. REDscript, as

discussed in Section 3.3, is the second major language that was used to program

REDengine 3 and TW3 next to C++, and compared to C++ it is faster to use.

⬇

⬇

Illustration 31: Screenshots of one way how REDscript blends into the abstraction hierarchy:

by exposing C++ engine/ game features and building on them for use in the next higher

level.

73

Illustration 31 demonstrates how REDscript and gameplay coders function as

mediators between C++ (programmers) and quest (designers). The base for

REDscript is C++, which is relatively hard to write and to which the job of an engine

programmer is dedicated at CD Projekt RED. REDscript helps expose and build on

code written in C++. In the designer friendly quest editor quest designers implement

the high-level sequential flows of a game. REDscript allows designers to code some

features for use in the editor themselves, and lets gameplay coders relieve the

engine programmers from implementing higher-level functionality. This division of

work follows directly from the engine’s architectural design and establishes

gameplay programmers as coders who have to deal with a lot of the shifting

requirements of a game: those requirements, which can not be easily implemented

within the stricter visual editors and which are not too critical for performance to let a

programmer implement it in C++. Examples for this are setting UI contents, the

crafting system or all the quest functions and conditions for the quest editor. The

trichotomy introduced by this separation most importantly allows for quest designers

to focus more on their high-level storytelling, supporting CD Projekt RED’s goal to

create narrative-driven games. The trichotomy also imposes a hierarchy of

dependencies and task formulation from designers to programmers, where the

engine programmers are the first to be able to do something and the designers the

last.

For modders, the C++ - REDscript - editor choice defaulted to REDscript until the

quest editor was released. Consequently, the mods made for REDengine 3 have

been dominated by REDscript and simple XML modifications/ mesh imports for a

long time. And while there are very few quest mods as of the day of writing, there

are none which actually modify the engine’s C++ source code, since in contrast to

REDscript, C++ code is translated to optimised machine code which is practically

impossible to reverse engineer. Thus, the decisions by CD Projekt RED engine

architects as to what is written in REDscript or C++ over long time spans influenced

what modders can actually change or not.

Some other architectural decisions of consequence can be found in REDscript’s

interface to quests and scenes as well as entities and communities. In order for

quest and scene editors to automatically find functions for usage in the “script”

blocks of the visual editors, REDscript features the quest and storyscene

keywords to be put in front of function definitions (cf. the second screenshot of

Illustration 31). This feature at the latest characterises REDscript as a domain

specific language. In computer science, domain specific languages are

programming languages which are not neutral in the sense that they ”are tailored to

74

a specific application domain”175. The inclusion of these keywords furthermore

underlines that REDengine 3 is geared towards having a focus on being a

storytelling tool and, more interestingly, that it hardcodes the semantics of terms

such as “scene” and “quest” to a large degree. We have already seen plenty of

evidence for how quest content is standardised in certain formats such as the quest

graph or the pattern of NPC community building, and we will now see that the very

same is true for scenes as elements of a quest.

4.3.3 A Language for Scene Building

Scenes in REDengine 3 are integrated as many other quest elements via simple

quest blocks into the quest graph – direct their own quests and determine when and

where a certain scene should play. A scene asset itself is a CR2W file containing a

scene graph, a structure very similar to quest graphs, with the difference that nodes

can be sections of speech and cinematics, choices or script calls. Illustration 32

demonstrates how such a scene graph looks visually – while the example is taken

from TW2 and opened in REDkit, the actual tool from CD Projekt RED used for TW3

looks basically the same176.

Illustration 32: Screenshots of a sample scene graph extract from TW2, showing input,

section with choice, script (added by the author) and regular section nodes.

Already at this point we can make some interesting notes. First of all, much like the

quest graph, the scene graph provides incentives for the making of complex and

non-sequential narrative experiences: as discussed in Section 4.1, non-sequentiality

is supported by the graph structure itself and by the possibility to give nodes and

176 Tomsinski, Piotr. (2017). Behind the Scenes of the Cinematic Dialogues in The Witcher 3:
Wild Hunt. Online: https://youtu.be/chf3REzAjgI?t=479 (accessed: 17.03.2023).

175 Mernik, Marjan; Heering, Jan; Sloane, Anthony M. (2005). When and how to develop
domain-specific languages. In: ACM Computing Surveys. vol. 37. no. 4. pp. 316-344. p. 316.

75

graphs different outcomes. But there is another system in REDengine 3 assisting

with more complex story structures, and that is called the fact system. Facts in

REDengine are simple named integer values, which usually assume the values 0

and 1 (false and true) only. While the player plays the game, the engine upholds a

database of all facts that were added at some point. The special point about the fact

system is that facts can be added, edited and read from any level, be it the quest

graph, a scene, a script and due to their scriptability, also any entity, community, etc.

This makes facts a kind of “glue” between the different levels and allows for complex

interactions, for example death counters for a group of hostile NPCs triggering a

progression of quest objectives from “Kill 0/X” to “Kill X/X” – a common pattern

which can easily be built using the fact system.

We can conclude that the interconnected graph and code systems on multiple levels

in REDengine 3 focus a specific kind of systemic thinking: content architects are

forced to think in terms of the subsystems at their disposal, the content(-patterns)

definable within and the content definable by means of interaction patterns like facts.

4.3.4 Modularity and Abstraction as Enabling Base Principles

The scene definition tools in REDengine 3 and in the radish modding tools also

expose a major reason for the successful production of the game’s numerous

scenes: user-friendly modularity. At the time of release, the “nuanced [..] dialogue

system”177 supporting high-quality narratives in not only main but also side quests,

was one of the aspects praised. The reasons for CD Projekt RED cinematic

designers being able to go into such detail that the scenes feel nuanced are, first of

all, the modularity of the CR2W scene definitions and, secondly, the way in which

this very technical format is made accessible to the user through the abstraction

hierarchy.

The base format CR2W allows arbitrary lists and nestings of chunks, where chunks

are essentially nodes of data with sets of properties – the technemes of the CR2W

language of REDengine 3. Scenes are one type of data saved in this modular

format, with elements of a scene mapped by means of standardised protocols to

CR2W chunks. The screenshot in Illustration 34.1 shows how a

CStorySceneSection element is mapped to a chunk with various properties,

among which are definitions of a camera, additive animations for some characters,

look-ats178 and scene props. The interrelation between these elements is defined in

REDengine 3’s RTTI (runtime type interface), a collection of definitions for data

178 “look-ats” define where a scene actor is looking at in a given moment.

177 Prescott, Shaun. (2015). The Witcher 3 PC review. PC Gamer. Online:
https://www.pcgamer.com/the-witcher-3-review/ (accessed: 17.03.2023).

76

types in the engine (the structure of e.g. communities and quest graphs is defined

here as well).

Illustration 33: Screenshot of an excerpt of the RTTI definition of CStorySceneSection,

defining for instance that a story scene section has a field nextLinkElement to define its

successor.

The definitions in the RTTI are modular in the sense that for example a section is

allowed to contain any event inheriting the CStorySceneEvent class. This

modularity of the RTTI definitions combined with its implementation in the CR2W

format drives not only the scene system but the majority of assets in the entire game

and thus also forms the first major point of abstraction in the engine's abstraction

hierarchy.

The YAML scene definitions in the radish modding tools are a pretty direct

translation of the engine’s asset format. A radish scene file contains three building

blocks. First of all, a repository of all the camera definitions (e.g. position, rotation,

field of view) as well as any asset references from the depot (to reuse e.g. existent

entities and animations). Secondly, the storyboard, consisting of sections of items

with each item applying to a line or pause from the dialogscript. An item defines,

relative to the line or pause, that a scene event like a character animation, prop

attachment, sound effect or camera change is played (see Illustration 34.2). Thirdly,

a dialogscript, where all lines/ pauses with preceding cues to storyboard items,

choices and script sections are defined. The dialogscript defines the scene graph.

77

Illustration 34: Screenshots of scene definitions in the abstraction hierarchy.

Top (34.1): in the CR2W format, shown in WolvenKit.

Middle (34.2): with YAML in the radish modding tools.

Bottom (34.3): In CD Projekt RED’s internal scene editor.179

179 Tomsinski, Piotr. (2016). Behind the Scenes of the Cinematic Dialogues in The Witcher 3:
Wild Hunt.https://youtu.be/chf3REzAjgI?t=604

78

Words like “storyboard” or “prop” and the visual appearance of the dialogscript editor

in Illustration 24.3 hint towards a major inspiration for TW3 scenes: film. Not only do

TW3 scenes180 cut between different cameras, they are also built using several

common principles from the filming industry. Among these are for example continuity

editing (shot/ countershot, continuity of movement and position)181 or standard

camera framings such as medium shots182. The radish in-game UI provides grain for

this language, with it providing for example a rule-of-thirds overlay (see Illustration

35) for camera position/ rotation selection and predefined actor setups. Lastly, the

job of cinematic designer at CD Projekt RED shows that the studio modelled not

only their engine, but also their job positions around the focus on the filmic scene

mode of gameplay as a major tool for storytelling.

Illustration 35: Screenshot of the radish modding tools in-game camera position/ rotation

selection tool with a rule-of-thirds overlay.

The biggest bottleneck of quest creation with the radish modding tools are scene

definitions: scenes are, as explained above, a highly interconnected structure with

references to other game assets and a graph-like structure. But, in contrast to

quests, the tool set does not provide a graphical editor, which is why a lot of work

has to be done manually. The next problem lies in the fact that this YAML language

for scene definitions is complex: presumed technemes like animations, props,

182 ibid. p. 189

181 Bordwell, David; Thompson, Kristin; Smith, Jeff. (2017). Film Art: An Introduction. 11th ed.
McGraw Hill. pp. 230f.

180 Compare this scene from the quest “Towerful of Mice”: IGN. (2015). The Witcher 3 Guide
- Side Quest: Towerful of Mice pt 1. Online: https://youtu.be/SDnnJ4s-SmI?t=706 (accessed:
24.03.2023).

79

effects, placements, cameras or dialog text need to be defined in different sections

of the file.

Patterns such as the division into text definition in the dialogscript and event

definition in the storyboard complicate the focus on a given timespan in the scene.

The toolset provides only rudimentary help in the form of partial generation of the

repository. The generation is based on a limited in-game scene construction and the

generation of a timeline of events and dialogscript elements.

Compared to this the official scene editor (see Illustration 34.3) developed by CD

Projekt RED replaces the entire management of text-based graph-, timeline- and

dialogscript editing and moreover gives the designer instant feedback with a preview

window, while modders need to recook the mod and restart the game to inspect

changes. The complexity of the systems such as scenes explains why the level of

abstraction of the specialised end points is so important for the resulting work

environment. Cinematic designers at CD Projekt RED were able to create detailed

scenes on a massive scale due to REDengine 3 scenes being highly modular and

the modularity being exposed to the user with very convenient tools.

80

Chapter 5. Conclusion
In this final chapter I will sum up the results of this thesis, reflect on the work and the

process and discuss ideas for future research.

5.1 Evaluation

This text has examined the conditions that enable and delimit quest modding in

REDengine 3. I will now evaluate the approach, which involved an examination of

texts theories from different fields, such as linguistics, media studies and cultural

studies, and the practical examination of the REDengine 3 and its modding context.

5.1.1 Integrating Design- with Game Studies

As a first step, an overarching framework for further discussion was searched in the

field of design studies. Settling on definitions and differentiations like Herbert A.

Simon’s understanding of “design” and the corresponding idea of “execution” helped

setting this frame: they established a vocabulary to describe what this thesis is

about, with an at times almost mathematical derivation of consecutive vocables, as

in the case of design/ execution and tools. The value of these concepts for

answering the question about the conditions was more in helping to describe and

understand the question than in actually answering. In that regard, the case of the

quest designer job at CD Projekt RED and their handling of both design and

execution was an exception. Starting with Herbert A. Simon’s design definition also

established that this thesis uses structuralist design studies as a baseline, which

allowed it to work interdisciplinary in Section 2.2, where design and game studies

met at the issue of tool-aided work.

Starting from a division between machine work and handicraft and using organ

-projection theory, tools were characterised to improve some aspect of a user’s

abilities and allow for reaching out to specific ability realms. I generalised Keogh and

Nicoll’s conception of game engine “grain” to a property of arbitrary tools – since any

tool has particular constraints orienting its user towards particular actions and away

from others. This set the stage for one of the core themes: how tools both limit and

free people. It also gave a precise conceptual point from which further research, for

example investigating affections towards particularly grained tools, could start.

After discussing the value of constraints for users, I moved on to language as a lens

for analysing technology. Taking up the structuralist movement in design studies

from the 1960s/ 70s and relating it to this thesis’ understanding of design, I could

identify structuralism as the broadest theoretical influence for this work. My main

81

argument for searching a language for REDengine 3 was to regard the engine as an

entity which has something to “say” about the game which it is running – delivering a

potentially unusual but valuable perspective on the game and pointing to

approaches like Actor-Network Theory. Therein entities like REDengine 3 and a

designer using it would be considered equal actants, interconnected in a network

and communicating with one another. Given that there even already exist

derivations of Actor-Network Theory for design studies183, a study building on this

thesis might consider how the theory integrates with REDengine 3 modding.

As a theoretical access to the “language” term, I deployed Jean Boudrillard’s idea of

object languages, which is motivated by the observation that the moving parts and

synthesises of a system have language-like qualities. I then addressed Boudrillard’s

stance that object instability is in conflict with language–likeness, arguing that many

languages experience change to some degree and how REDengine 3 is indeed

rather stable as a system. Boudrillard also argues for language instability caused by

those who engage with the object in question and by means of varying workflows,

patterns and other changes in the language – I agreed with this and thus motivated

the discussion in Chapter 3. This more holistic lens of grasping an object language

proved to be another positive effect originating from the engagement with design

studies. Lastly, I identified various ways to grasp elements of a language and

concluded with characterising a tool’s design language as the tool language’s subset

defining the tool’s grain. The idea of an engine’s language or dialogue with an

engine, rendered a productive discussion and added to hints towards an

Actor-Network Theory-like perspective on tools, but did not produce an explicit

formulation of a “vocabulary” of technical units and grammar. This might be resolved

by investigating concrete pattern languages for games, as written by Robert

Nystrom for architecture184, Marcus Trenton for quest designs185 or Christopher

Barney for game designs186. On the other hand the less structured analysis in

Chapter 4 allowed me to focus on the more interesting aspects and not burden it

with the grains about which not much of interest could be said.

5.1.2 Connecting to the Cultural Context

Chapter 3 was designed to provide an insight into the cultural context surrounding

work with REDengine 3 if the (working) person in question has access to the engine

186 Barney, Christopher. (2020). Pattern Language for Game Design. CRC Press.

185 Trenton, Marcus Alexander. (2009). Quest Patterns for Story-Based Video Games
[Thesis].

184 Nystrom, Robert. (2014). Game Programming Patterns. Genever Benning.

183 Yaneva, Albena. (2009). Making the Social Hold: Towards an Actor-Network Theory of
Design. In: (2009). Design and Culture. vol. 1. no. 3. pp. 273-288

82

via modding only. It starts with drawing a line from other storytelling media like

theatre, books or cinema to video game storytelling. I could later on show that

REDengine 3 and TW3 provide the grain and style to create filmic scenes and a

theatre-like “stage” layered with hideable set decoration. In writing about video game

storytelling, Jenning’s idea of distributed authorship helped to identify quests as

artefacts standing right in the middle between player- and developer influence.

Then, based on a definition by Jeff Howard, different elements of quests in video

games are discussed to be applied in Chapter 4. This connection to (video game)

storytelling showed that the story tech designers at CD Projekt RED did not create

their means from a vacuum, but built on known means which they scaled to a large

production.

In Section 3.1 I differentiated between a template quest, which is the possibly

non-serial structure to be instantiated, and the actualised quest, which is the

instantiated variant, completed by the player’s actions. Moreover, discussing quest

goals and motivations and objectives as a way for designers to explicitly prescribe

goals were introduced. In Section 3.2 I presented CD Projekt RED as a video game

studio which, based on publicly available information, seems to be very aware of

their engine and workflow choices. REDengine 3 was characterised as a closed

engine in opposition to Nicoll and Keogh’s description of the Unity Engine as

relational: REDengine 3 is not meant to be a general-purpose, communal game

engine and has rather restrictive usage conditions. Chapter 3 additionally showed

how CD Projekt RED engages in optimisation of workflows and job positions,

tailoring jobs towards specific aspects they want to be hand-made and providing

automation for all else. Consecutive work could take up this “field research”

investigating the work conditions in CD Projekt RED, for example via analysing

further publicly available information such as the strategy update on the “RED 2.0”

work transformation187, or actually interviewing studio members. In general,

interviews or surveys could enhance the objective value of my thoughts in Chapter

3.

The thesis then turned to evaluate modding as a necessary context for exploring

REDengine 3. Modding was introduced as an activity focused on and motivated by

extending, latering and learning about games. The TW3 modding scene as

amalgamation of the “collaborative internet network”188 concerned with modding was

shown to have built or adapted a lot of (infra-)structure, including communication

188 cf. Sihvonen, Tanja. Players Unleashed! Modding The Sims and the Culture of Gaming. p.
12

187 CD Projekt. (2021). CD Projekt Group Strategy Update. p. 9. Online:
https://www.cdprojekt.com/en/wp-content/uploads-en/2021/03/cd-projekt-group-strategy-upd
ate-1.pdf (accessed: 19.03.2023)

83

platforms, mod distribution sites and custom tools. Similarly to how investigating the

(work) culture at CD Projekt RED could be extended, the TW3 modding scene could

be researched more, for example with a focus on how natural language jargon might

relate to an object language.

I discussed the power asymmetry resulting from CD Projekt RED’s control over

REDengine 3 and the modders’ wish to use it. In a comparison of motivations

regarding modding it showed that modders were mostly motivated intrinsically (e.g.

exploration of technology or wanting to enhance and implement their own ideas)

while the company is driven by using modding also as a means to proliferate

themselves, gain free content and a new talent pool. The case of wghost81’s claims

shows how the resulting company strategy of bare-minimum technical modding

support but endorsement can lead to frustration and frontiers. At last Chapter 3

showed how the missing support from the official side for “proper” modding led to a

small group of modders engaging in tool, format and workflow development

themselves. This political issue of power asymmetry between modders and engine

owner could be compared to other games and engines: companies like Nintendo are

even more restrictive in that regard189, in contrast to, for example, Bethesda

Softworks.

5.1.3 Inspecting REDengine 3

With Chapter 4 I dived into an analysis of REDengine 3’s grain. I started with an

explanation of the questgraph as an architectural structure collecting quest flow,

events and conditions in one data asset type. Combined with a quest editor as given

in the radish modding tools, this artifice allows for quest designers to work directly

and centralised on their formalised object of interest. The matter of the radish quest

editor also brought to light consequences from the minimal official modding support:

some functionality like the CQuestCutControlBlock are not implemented in the

community editor and thus disallow the full usage range possible in REDengine 3.

Quest graphs together with the quest description journal feature proved to have a

structural analogy to interactive fiction and form a kind of ergodic literature. More

generally, the customisation options for quest designers showed that quests in

REDengine 3 very blatantly include storytelling in text form, with the entire glossary

being a collection of short stories and character descriptions or -histories. The

glossary categories, together with how entities are sorted and integrated in game

189 Brookes, Tim. (2020). Everything you need to know about Nintendo Switch modding.
How-To Geek. Online:
https://www.howtogeek.com/670631/everything-you-need-to-know-about-nintendo-switch-mo
dding/ (accessed: 19.03.2023)

84

world communities, showed an ambiguous stance as to how beasts, humans and

animals relate to each other, incentivising blurry boundaries between them, as

promised in the game’s marketing.

Section 4.1 and 4.2 exposed moreover how UI spaces and parameters dedicated to

specific purposes – like objectives – by their mere existence nudge designers to use

them and thereby, in the case of TW3’s objective system, also nudge towards a

quest design marked by heavy guidance and productivity-measurement. Comparing

this aspect with other games showed that CD Projekt RED in general prefers this

style of games. Discussing whether modders might be able to change this aspect of

the game, allowing for a less-guided experience of Witcher games, rendered the

result that this is practically impossible for existent content, but might be possible for

mods playing in a new world.

The case of defining rewards demonstrated that the length of the path of least

resistance to solving a problem can hinder execution and thus influence design as

well. Users of the radish modding tools will avoid giving coins or experience as

rewards, since YAML-defined rewards do not support these parameters and XML

rewards are not easily integrated with the quest editor. Examples like these show

how the grain of REDengine 3 is much more influenced by usability advantages,

than by features being present or not. This begs the question, whether future

analysis of engine grain should indeed be conducted with a background in user

interface/ experience design. The concept behind the path of least resistance also

came into play when I observed time scales for various happenings in the TW3

modding scene. REDengine 3 features like initializers or encounters have been

inaccessible for quest mod creators, simply because they took or still take a long

time to research and implement for the tool creators. The path of least resistance to

them is too long and thus hinders them from being reachable. This could be

connected to the issues surrounding the power asymmetry, since controlling access

to tools also means controlling what modders spend their time on, which can be

regarded as another fuel for frontiers between modders and the company, and in the

end motivating this frontier in itself.

In the last section of Chapter 4 I introduced the “abstraction hierarchy with end

points” as a concept to explain why the overall architecture of REDengine 3 was

successful. Identifying various intermediate and smaller domain languages (e.g.

REDscript), it became clear that one of the main strengths of REDengine 3 lies in it

providing specific languages catered to its end users, allowing them to reach out to

certain levels of quantity and quality. In turn, most of these could be created and

made accessible because most of them rely on one highly modular and efficient file

format, and because their inner complexity was mapped to convenient graphical

85

user interfaces. With the case of the engine’s quest and scene design languages I

showed how the absence of an editor can indeed be the reason why an extremely

powerful technical language is not used as much as it could be.

5.2 Résumé

The conditions of quest modding with REDengine 3 showed to be deeply intertwined

to the modding context: the creators’ intentions as expressed in the engine’s

architecture and narrative focus played a role, but were overshadowed by the lack of

proper tools to mod TW3, be they by CD Projekt RED or ambitious modders. Design

and language as theoretical frame provided a suiting context, but yielded only partial

success in providing concrete lenses for analysis. Most notably did neither cultural

nor technical conditions really fit into a strongly structured, overarching language –

much rather did natural language descriptions lend themselves to capture what is

most notable. This leads to the conclusion that structuralism in its more

mathematical form can be indeed insufficient to subsume even highly structured

objects such as REDengine 3.

In exposing low-level technical details of REDengine 3 and TW3 and interpreting

them for instance with Aarseth’s ergodicity term, this thesis successfully brought

information into a game studies context. However, researching the engine showed

that the “foundations” of a game like TW3 are not all interesting for game studies –

CR2W as a format is mostly interesting for its language-like character and

modularity, but how exactly it is implemented in machine code does not yield much

information for the study of games.

Notwithstanding, this information can be interesting for game developers, the

second target audience of this work: one could also call this thesis a work from the

field of games engineering. Understood as a sub-discipline of software engineering,

games engineering might be explored as a scientific discipline as well: the case of

domain languages has already shown how software engineering theory could be

applied to game technology. Other concepts from this field such as software product

lines also have potential and could be pursued further.

86

Bibliography

Literature, Websites and Posts

Aarseth, Espen. (1997). Cybertext—Perspectives on Ergodic Literature. JHU Press.

Aeltoth. (2023). “She should just stop now, the only people that will trust what she
says are gullible people who don't understand [..]” [Message]. The Witcher. Discord.
Online:
https://discord.com/channels/597170291021709327/597171985050501150/1071032
950826745887 (accessed: 16.03.2023).

Alexander, Christopher. (1967). The Timeless Way of Building. Oxford University
Press.

A. Simon, Herbert. (1996). The sciences of the artificial. 3rd ed. MIT Press.

Barney, Christopher. (2020). Pattern Language for Game Design. CRC Press.

Benjamin, Walter. (1916). Über die Sprache überhaupt und über die Sprache der
Menschen. Online:
https://signaturen-magazin.de/walter-benjamin--ueber-sprache-ueberhaupt-und-ueb
er-die-sprache-des-menschen.html (accessed: 16.03.2023).

Black Tree Gaming Ltd. (2023). The Witcher 3 mod categories at The Witcher 3
Nexus - Mods and community. Online:
https://www.nexusmods.com/witcher3/mods/categories (accessed: 16.03.2023).

Black Tree Gaming Ltd. (2023). The Witcher 3 Nexus - Mods and community.
Online: https://www.nexusmods.com/witcher3 (accessed: 16.03.2023).

Bogost, Ian. (2006). Unit Operations. An Approach to Video Game Criticism. The
MIT Press.

Bogost, Ian; Montfort, Nick. (2009). Platform Studies: Frequently Questioned
Answers.

Bogost, Ian; Montfort, Nick. (2022). Levels. Platform Studies, a book series
published by MIT Press, Ian Bogost and Nick Montfort, series editors. Online:
http://www.platformstudies.com/levels.html (accessed: 16.03.2023).

Bordwell, David; Thompson, Kristin; Smith, Jeff. (2017). Film Art: An Introduction.
11th ed. McGraw Hill.

Boudrillard, Jean. (1996). The System of Objects. 1st ed. Verso.

87

Brookes, Tim. (2020). Everything you need to know about Nintendo Switch modding.
How-To Geek. Online:
https://www.howtogeek.com/670631/everything-you-need-to-know-about-nintendo-s
witch-modding/ (accessed: 19.03.2023)

Cambridge University Press. (2022). CONSTRAINT | meaning, definition in
Cambridge English Dictionary. Online:
https://dictionary.cambridge.org/dictionary/english/constraint (accessed:
16.03.2023).

Cambridge University Press. (2022). DESIGN | meaning, definition in Cambridge
English Dictionary. Online: https://dictionary.cambridge.org/dictionary/english/design
(accessed: 16.03.2023).

Cambridge University Press. (2022). LANGUAGE | meaning, definition in Cambridge
English Dictionary. Online:
https://dictionary.cambridge.org/dictionary/english/language (accessed: 16.03.2023).

Cambridge University Press. (2022). PLAN | meaning, definition in Cambridge
English Dictionary. Online: https://dictionary.cambridge.org/dictionary/english/plan
(accessed: 16.03.2023).

CD Projekt. (2021). CD Projekt Group Strategy Update. Online:
https://www.cdprojekt.com/en/wp-content/uploads-en/2021/03/cd-projekt-group-strat
egy-update-1.pdf (accessed: 19.03.2023)

CD Projekt. (2023). History - CD PROJEKT. Online:
https://www.cdprojekt.com/en/capital-group/history (accessed: 16.03.2023).

CD Projekt RED. (2022). A New Saga Begins. Online:
https://www.thewitcher.com/en/news/42167/a-new-saga-begins (accessed:
16.03.2023).

CD Projekt RED. (2023). CD PROJEKT RED - Award-winning creators of
story-driven role-playing games. Online: https://cdprojektred.com/en/ (accessed:
13.03.2023).

CD Projekt RED. (2020). Fan Content Guideline. Online:
https://www.cdprojektred.com/en/fan-content (accessed: 16.03.2023). Section 3,
Paragraph a.c

CD Projekt RED. (2021). Highlights from the Path: Mods. Online:
https://www.thewitcher.com/en/news/38447/highlights-from-the-path-mods
(accessed: 16.03.2023).

CD Projekt RED. (2023). MODS (THE WITCHER 3) [Category]. CD Projekt RED
Forums. Online:
https://forums.cdprojektred.com/index.php?forums/mods-the-witcher-3.69
(accessed: 16.03.2023).

88

CD Projekt RED. (2023). Pisarka/Pisarz | SmartRecruiters. Online:
https://jobs.smartrecruiters.com/CDPROJEKTRED/743999704525474-writer
(accessed: 16.03.2023).

CD Projekt RED. (2022). Quest Designer | SmartRecruiters. Online:
https://jobs.smartrecruiters.com/CDPROJEKTRED/743999857102501-quest-design
er (accessed: 16.03.2023).

CD Projekt RED. (2022). REDmod END USER LICENSE AGREEMENT. Online:
https://cdn-l-cyberpunk.cdprojektred.com/redmod_eula_en.pdf (accessed:
16.03.2023).

CD Projekt RED. (2013). The Witcher 3: Wild Hunt - Killing Monsters Cinematic
Trailer. Online: https://youtu.be/c0i88t0Kacs (accessed: 17.03.2023).

CD Projekt RED. (2022). User Agreement. Online:
https://regulations.cdprojektred.com/en/user_agreement (accessed: 16.03.2023).
Section 8., Paragraph (d)

Costikyan, Greg. (2002). I Have No Words & I Must Design. In: Mäyrä, Frans (ed.).
(2002). Proceedings of Computer Games and Digital Cultures Conference. vol. 1.
Tampere University Press.

Crews, Frederick C. (1977). The Random House Handbook. 2nd ed. Random
House.

Deleuze, Gilles. (1992). Woran erkennt man den Strukturalismus? Merve Verlag.

Engell, Lorenz; Siegert, Bernhard. (2012). Editorial. In: Engell, Lorenz; Siegert,
Bernhard. (2012). ZMK Zeitschrift für Medien- und Kulturforschung 3/1/2012:
Entwerfen. Meiner. pp. 5-9

Engström, Henrik. (2019). GDC vs. DiGRA: Gaps in Game Production Research.

erx. (2018). “there is a good variety of different blocks to choose from, however two
VERY important blocks that are missing in [..]” [Message]. w3 radish tools. Discord.
Online:
https://discord.com/channels/416336392692695040/416343412191789087/448227
521268547585 (accessed: 17.03.2023).

Friedman, Ken. (2003). Theory construction in design research: criteria:
approaches, and methods. In: Cross, Nigel (ed.). (2003). Design Studies. vol. 24.
no. 6. pp. 507-522

Harrasser, Karin. (2018). Schwächeln. Technikphilosophie, Techniksubjektivität,
Unvermögen. In: Harrasser, Karin; Timm, Elisabeth (eds.). (2018). Zeitschrift für
Kulturwissenschaften. Homo Faber. ed. 12. no. 2. pp. 149–159.

89

Hopkins, Tom. (2018). Witcher 3: How Long it Is and How Many Quests There Are.
Twinfinite. Online:
https://twinfinite.net/2018/01/witcher-3-how-long-how-many-quests (accessed:
16.03.2023).

Howard, Jeff. (2008). Quests: Design, Theory, and History in Games and Narratives.
2nd ed. A K Peters/ CRC Press.

IGN. (2015). The Witcher 3 Guide - Side Quest: Towerful of Mice pt 1. Online:
https://youtu.be/SDnnJ4s-SmI (accessed: 24.03.2023).

Ingenito, Vince. (2015). The Witcher 3 Review - IGN. Online:
https://www.ign.com/articles/2015/05/12/the-witcher-3-the-wild-hunt-review
(accessed: 16.03.2023).

Jenkins, Henry. (2004). Game Design as Narrative Architecture. In: Wardrip-Fruin,
Noah; Harrington, Pat (eds.). (2004). First Person. New Media as Story,
Performance, and Game. MIT Press. pp. 118-130

Jennings, Stephanie C. (2016). Co-Creation and the Distributed Authorship of Video
Games. In: Valentine, Keri Duncan; Jensen, Lucas John (eds.). (2016). Examining
the Evolution of Gaming and Its Impact on Social, Cultural, and Political
Perspectives. IGI Global.

Kapp, Ernst. (1877). Grundlinien einer Philosophie der Technik. In: Ziemann,
Andreas. (ed.). (2019). Grundlagentexte der Medienkultur. Springer VS. pp. 45–53

Kent, Emma. (2021). Cyberpunk 2077 Keanu sex mod removed following CD
Projekt warning. Eurogamer. Online:
https://www.eurogamer.net/cd-projekt-red-shuts-down-cyberpunk-2077-keanu-sex-m
od (accessed: 16.03.2023).

Keogh, Brendan; Nicoll, Benjamin. (2019). The Unity Game Engine and the Circuits
of Cultural Software. Springer International Publishing.

Kücklich, Julian. (2005). Precarious Playbour: Modders and the Digital Games
Industry. In: Neilson, Brett; Rossiter, Ned (eds.). (2005). The Fibreculture Journal.
vol. 5.

Mareis, Claudia. (2014). Theorien des Designs zur Einführung. 1st ed. Junius
Verlag.

Martin, Paul. (2018). The Intellectual Structure of Game Research. In: Game
Studies. vol. 18. no. 1

Mello-Klein, Cody. (2017). The power of handcrafted visual design in video games –
storybench. Online:
https://www.storybench.org/the-power-of-handcrafted-visual-design-in-video-games/
(accessed: 16.03.2023).

90

Mernik, Marjan; Heering, Jan; Sloane, Anthony M. (2005). When and how to
develop domain-specific languages. In: ACM Computing Surveys. vol. 37. no. 4. pp.
316-344.

Momot, Marcin; CD Projekt RED. (2018). Getting Started / FAQ (UPDATED
21.11.2018). [Thread]. CD Projekt RED Forums. Online:
https://forums.cdprojektred.com/index.php?threads/getting-started-faq-updated-21-1
1-2018.56132/ (accessed: 16.03.2023).

National Geographic Society. (2022). Storytelling and Cultural Traditions. Online:
https://education.nationalgeographic.org/resource/storytelling-and-cultural-traditions
(accessed: 16.03.2023).

Norman, Don. (2013). The Design of Everyday Things. Revised and Expanded
Edition. Hachette UK.

Nystrom, Robert. (2014). Game Programming Patterns. Genever Benning.

Pias, Claus. (2010). Poststrukturalistische Medientheorien. In: Weber, Stefan (ed.).
(2010). Theorien der Medien. 2nd ed. UVK Verlagsgesellschaft mbH. pp. 277-296

Pierściński, Filip. (2022). Introduction of the Interactive Cinematics in 'Cyberpunk
2077'. Online: https://www.youtube.com/watch?v=exqPwGIxryI (accessed:
16.03.2023).

Poor, Nathaniel. (2013). Computer game modders’ motivations and sense of
community: A mixed-methods approach. In: (2014). New Media & Society. vol. 16.
no. 8. pp. 1249–1267.

Prescott, Shaun. (2015). The Witcher 3 PC review. PC Gamer. Online:
https://www.pcgamer.com/the-witcher-3-review/ (accessed: 17.03.2023).

Razbuten. (2022). The Problem With Mini-Maps. Online:
https://youtu.be/nmzYRT7LBQs (accessed: 17.03.2023).

RazzDaNinja. (2020). “My longest playthrough was with an Argonian named
Skullhunter. I played him in a way that he couldn’t care less [..]” [Comment]. Reddit.
Online: https://www.reddit.com/r/skyrim/comments/emlue0/player_stories/
(accessed: 16.03.2023).

REDengine 3 research contributors. (2022). W3Speech file. Generic - REDengine3
research. Online:
https://wiki.redmodding.org/redengine3-research/formats/generic#w3speech-file
(accessed: 16.03.2023).

rmemr. (2015). “There are many reasons one can think of… Some do this because
they are great fans of the previous games [..]” [Post]. CD Projekt RED Forums.
Online:

91

https://forums.cdprojektred.com/index.php?threads/im-just-curious-about-mods-new
bie-alert.62410/#post-2109367 (accessed: 16.03.2023).

rmemr. (2020). Trial of the radishes - Trial 1 - Installation at The Witcher 3 Nexus -
Mods and community. Online: https://www.nexusmods.com/witcher3/articles/113
(accessed: 16.03.2023).

rmemr. (2022). “‘trials of the radishes - reportedly only three in ten survived the trials’
😄” [Message]. w3 radish tools. Discord. Online:
https://discord.com/channels/416336392692695040/417414398987206676/985503
608676167740 (accessed: 16.03.2023).

Ruppert, Wolfgang. (1993). Zur Geschichte der industriellen Massenkultur.
Überlegungen zur Begründung eines Forschungsansatzes. In: Ruppert, Wolfgang.
(1993). Chiffren des Alltags. Erkundungen zur Geschichte der industriellen
Massenkultur. Jonas. pp. 9-22

Sasko, Paweł; Digital Dragons. (2017). Life, Love and Quest Design. Anatomy of
Quests in The Witcher 3: Wild Hunt. Online:
https://www.youtube.com/watch?v=g5TH9KakBDw (accessed: 16.03.2023).

Schell, Jesse. (2019). The Art of Game Design: A Book of Lenses. 3rd ed. CRC
Press.

Sihvonen, Tanja. (2011). Players Unleashed! Modding The Sims and the Culture of
Gaming. Amsterdam University Press.

Tomaszkiewicz, Mateusz; CD Projekt RED. (2014). The devil is in the details | CD
Projekt RED's Official Blog. Online:
https://web.archive.org/web/20130116043021/http://cdpred.com/the-devil-is-in-the-d
etails/ (accessed: 16.03.2023).

Tomsinski, Piotr. (2016). Behind the Scenes of the Cinematic Dialogues in The
Witcher 3: Wild Hunt. Online: https://youtu.be/chf3REzAjgI (accessed: 17.03.2023).

Trenton, Marcus Alexander. (2009). Quest Patterns for Story-Based Video Games
[Thesis].

Twitter, Inc. (2023). mod (from:witchergame) - Twitter Search / Twitter. Online:
https://twitter.com/search?q=mod%20(from%3Awitchergame)&src=typed_query
(accessed: 16.03.2023).

Van Ord, Kevin. (2015). The Witcher 3: Wild Hunt Review - GameSpot. Online:
https://www.gamespot.com/reviews/the-witcher-3-wild-hunt-review/1900-6416135/
(accessed: 16.03.2023).

Vinthir; CD Projekt RED. (2022). Mods and The Witcher 3 next-gen update [Thread].
CD Projekt RED Forums. Online:

92

https://forums.cdprojektred.com/index.php?threads/mods-and-the-witcher-3-next-ge
n-update.11110486/ (accessed: 16.03.2023).

wghost81. (2023). CDPR correspondence on community mods in TW3 NGE – Old
Ghost Stories. Online:
https://wghost81.wordpress.com/2023/01/19/cdpr-correspondence-on-community-m
ods-in-tw3-nge/ (accessed: 16.03.2023).

wghost81. (2023). Time to wake up, samurai – Old Ghost Stories. Online:
https://wghost81.wordpress.com/2023/01/17/time-to-wake-up-samurai/ (accessed:
16.03.2023).

Witcher Wiki contributors. (2023). A Towerful of Mice. Online:
https://witcher.fandom.com/wiki/A_Towerful_of_Mice (accessed: 24.03.2023).

Witcher Wiki contributors. (2022). Modding the UI. Witcher 3 Modding. Online:
https://witcher-games.fandom.com/wiki/Witcher_3_Modding#Modding_the_UI
(accessed: 16.03.2023).

Wikipedia contributors. (2023). CD Projekt. Online:
https://en.wikipedia.org/wiki/CD_Projekt (accessed: 16.03.2023).

Wikipedia contributors. (2023). Gwent: The Witcher Card Game. Online:
https://en.wikipedia.org/wiki/Gwent:_The_Witcher_Card_Game (accessed:
16.03.2023).

Wikipedia contributors. (2023). The Witcher 3: Wild Hunt - Wikipedia. Online:
https://en.wikipedia.org/wiki/The_Witcher_3:_Wild_Hunt#Development (accessed:
16.03.2023).

Wikipedia contributors. (2021). The Witcher Battle Arena. Online:
https://en.wikipedia.org/wiki/The_Witcher_Battle_Arena (accessed: 16.03.2023).

Wikipedia contributors. (2022). Thronebreaker: The Witcher Tales. Online:
https://en.wikipedia.org/wiki/Thronebreaker:_The_Witcher_Tales (accessed:
16.03.2023).

Yaneva, Albena. (2009). Making the Social Hold: Towards an Actor-Network Theory
of Design. In: (2009). Design and Culture. vol. 1. no. 3. pp. 273-288

Video Games
Bethesda Game Studios. (2007). The Elder Scrolls IV: Oblivion Game of the Year
Edition (v1.2.0416).

Bethesda Game Studios. (2007). The Elder Scrolls V: Skyrim (1.1).

CD Projekt RED. (2015). The Witcher 3: Wild Hunt. (4.01).

93

CD Projekt RED. (2015). The Witcher 3: Wild Hunt - Hearts of Stone.

CD Projekt RED. (2016). The Witcher 3: Wild Hunt - Blood and Wine.

Valve. (2007). Portal190.

Software
CD Projekt RED. (2011). REDkit (3.0.1).

CD Projekt RED. (2015). Witcher 3 Mod Tools (3.0).

Epic Games, Inc. (2023). Unreal Engine 5 (5.1).

rmemr. (2022). radish modding tools (preview-v2022-12-26).

WolvenKit contributors. (2023). WolvenKit (7.2.0).

Images
All images in this work, unless otherwise noted in-place, are screenshots created by

the author.

190 The version of Portal inspected for this thesis is unknown. I accessed the game on the
Steam distribution platform in January of 2023.

94

Declaration
Ich versichere, dass ich die Arbeit selbständig und ohne Benutzung anderer als der

angegebenen Quellen und Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich

oder sinngemäß aus Veröffentlichungen in schriftlicher oder elektronischer Form

entnommen sind, habe ich als solche unter Angabe der Quelle kenntlich gemacht.

Ich habe diese Arbeit nicht bereits zur Erlangung eines akademischen Grades

eingereicht.

Mir ist bekannt, dass im Falle einer falschen Versicherung die Arbeit mit „nicht

ausreichend“ bewertet wird. Ich bin ferner damit einverstanden, dass meine Arbeit

zum Zwecke eines Plagiatsabgleichs in elektronischer Form versendet und

gespeichert werden kann.

Bayreuth, 24.03.2023

95

